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Abstract

The properties of the hollow beam produced by a conical lens are studied in detail. In particular, the impact of a

rounded vertex is examined. It is shown that it could lead to drastic changes in the transverse distribution of the hollow

beam, determined by the ratio between the transverse size of the incident beam and the size of the blunt area. An

adequate choice for this ratio allows us to either minimize the losses or optimize the distribution symmetry.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Axicons are a family of cylindrical symmetrical
optical systems that produce a line focus rather
than a point focus from incident collimated beam
[1]. There are several types of axicons, working
either by reflection or by transmission, and being
either converging or diverging, but the most
common one is probably the conical lens. Such a
lens is a cone made with a material of index n, and
a basis perpendicular to its main z-axis (Fig. 1). An
incident collimated beam, propagating along the

z-axis, is deviated towards the main axis of the
lens, with an angle b ¼ ðn� 1Þa, where a is the
base angle of the cone. a is usually a small angle,
typically few degrees or less. Beyond the lens, two
zones must be distinguished: in the first one, just
after the lens, all deviated beams spatially coexist
partially (in the hatched zone of Fig. 1), resulting
in a diffraction-free beam. Beyond this zone,
beams deviated along different directions do not
overlap any more, and the intensity becomes dis-
tributed on a ring. Such hollow beams have re-
cently regain interest, in the perspective of their
use in optical trapping of atoms [2–4] and Bose–
Einstein condensates [5].

These applications require specific properties,
as e.g., a zero intensity in the center of the beam, as
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predicted by the diffraction theory [6]. However, in
most of the experimental realizations, the obtained
pattern is more complicated: a usual observed
defect is a drastic asymmetry of the distribution
with a tail towards the center, possibly secondary
rings and thus a non zero intensity at the center [2].
Practically, this leads to the need of a mask to
clean the inner region of the hollow beam, and
thus a loss of light power and additional diffrac-
tion effects, which are both major inconveniences
in the experimental uses of such hollow beams.
The source of these differences with respect to the
theory is not clearly identified. As the conical lens
vertex plays a central role in the transverse distri-
bution of the hollow beam, it is natural to search
for the origin of these defects in the properties of
this point, in particular by taking into consider-
ation its real shape. In the present paper, we study
the modifications induced by the bluntness of the
conical lens vertex on the hollow beam transverse
shape. We show in particular that the ratio be-
tween the transverse size of the incident beam and
the size of the blunt area determines the transverse
distribution, and that an adequate choice for this
ratio allows us to either minimize the losses or
optimize the distribution symmetry.

2. Geometrical propagation

Fig. 1 describes schematically the geometrical
beam propagation through a conical lens. The
diffraction-free zone appears between the conical
lens vertex V, and the point X where all deviated
beams separate. The spatial distribution of the
light field in this zone is the superimposition of the
interferences between deviated beams and diffrac-
tion on the conical lens vertex V. The transverse
distribution of the resulting field follows a Bessel
function [7]. Its exact nature depends on the shape
of the incident beam. For example, an appropriate
incident Laguerre–Gaussian beam is able to gen-
erate a high-order Bessel beam of arbitrary order
[8]. The main interest of Bessel beams is that they
propagate without diffraction, i.e., their intensity
transverse profile remains invariant upon propa-
gation on macroscopic distances [9]. Bessel beams
produced by axicons have been extensively stud-

ied, within the framework of numerous applica-
tions, such as second-harmonic generation [10],
optical parametric generator [11], and atom trap-
ping [12].

Beyond point X, i.e., for z > z0, with z0 ¼ ri=b,
where ri is the radius of the incident beam, all
deviated beams separate (in the geometrical ap-
proximation), and a hole with radius R0 � q ap-
pears in the center of the beam. R0 ¼ bz is the
distance between the z-axis and the ray crossing
the conical lens vertex, while q is the thickness of
the ring (q ¼ ri in the present case). It is also
practical to define the radius r0 of the ring, with
r0 ¼ R0 � q=2 (Fig. 1). Such hollow beams are
fundamentally different from hollow Laguerre–
Gaussian modes. First, in the last ones, the circu-
lation of the phase around the pattern center is
equal to 2pl, where l > 0 is the angular index of
the mode, while in the axicon hollow beam, it is
equal to that of the incident beam, i.e., zero in the
case of a plane wave or a TEM00 mode. This phase
variation has no consequence on the intensity
transverse distribution, but is critical in field de-
pendent systems, e.g., if the hollow beam interferes
with another beam. The second point concerns
directly the intensity distribution: the axicon hol-
low beam can be realized with arbitrary ratio be-
tween the radius and the thickness of the beam, as
both quantities depend differently on z, while in
Laguerre–Gaussian modes, this ratio is fixed by
the Laguerre polynomial distribution and does not

Fig. 1. Schematic behavior, in the geometrical approximation,

of a collimated beam through a conical lens C of base angle a.
The propagation axis is the z-axis, with its origin at the axicon

vertex. After the conical lens, the beam is globally deviated

towards the z-axis with an angle b. Point V is on the axicon

vertex, while point X corresponds to the abscissa z0 where a

hole appears in the center of the beam in geometrical approx-

imation. The hatched zone between V and X is the Bessel zone.

For z > z0, the hollow beam has a radius r0 and a thickness q.
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vary with z, except of course if it is transformed by
an axicon [13]. Axicon hollow beams can be used
in different applications, from laser machining [14]
to optical traps for cold atoms [2–4] and Bose–
Einstein condensates [5].

3. Gaussian beam propagation

In practical realizations, incident beams are
often produced by a laser, and thus are gaussian
beams. In that case, the incident beam cannot be
considered as collimated, but is characterized by a
waist w0 where the beam spot size is minimum. To
control the waist location and size, a convergent
lens is usually inserted before the conical lens. In
particular, it is easy with such a doublet to locate
the waist after the conical lens. Fig. 2 shows the
propagation of a collimated incident beam
through a convergent lens followed by a conical
one, in the geometrical approximation. As for
collimated beams, an incident ray at the distance r
from the z-axis, is deviated with an angle b, with
bðrÞ ¼ ðn� 1Þa þ r=f , where f is the focal length
of the convergent lens. We can also define a dis-
tance z0 such that for z > z0, a hole appears in the
center of the beam. For thin lenses, a simple cal-
culation leads to z0 ¼ riðf � dÞ=ðri þ ðn� 1Þaf Þ
where d is the distance between the two lenses. As
in the single conical lens case, R0 and q, which now
depend both on z, can be easily calculated. In
particular R0 ¼ ðn� 1Þaz has the same value as
in the single conical lens scheme. The point focus

in F is transformed in a ring focus of radius
R0 ¼ ðn� 1Þaðf � dÞ, at location F0 ’ F, where F
is the focus point of the convergent lens (the in-
terval between both points is in a2). If the gaussian
properties of the incident beam are taken into
consideration, all these quantities becomes indefi-
nite, as the transverse expansion of a gaussian
beam is theoretically infinite. However, for large
incident beams (i.e., wi � k, wi being the incident
beam size at 1=e2 and k the wavelength), the geo-
metrical approach remains a good approximation.
Therefore, the above expressions, where ri is re-
placed by wi, can be used, keeping in mind that
they concern 1=e2 intensity limits.

This geometrical approach is unable to de-
scribe the thickness q of the ring. To evaluate it,
it is necessary to take into account the diffraction
of the beam during the propagation, and in
particular on the conical lens vertex. Such a
theory shows that when the convergent conical
lens doublet is illuminated by a gaussian beam,
the transverse distribution of the ring at the waist
location, is also gaussian, symmetrical with re-
spect to the r ¼ R0 circle [6]. Its thickness at 1=e2

is q0 ¼ 1:65w0, comparable to the beam waist w0

produced by the converging lens without axicon.
The field amplitude of the wave after the lens is
given by the usual Fresnel approximation to the
Kirchhoff integral

uðP Þ ¼ � i

2k

Z
S
uiðMÞsðMÞI e

ikf

f
dS ð1Þ

where k is the wavelength and k ¼ 2p=k is the wave
vector. uðP Þ is the complex amplitude of the field
in point P of the observation plane, uiðMÞ the in-
cident field in point M of the diffraction plane and
sðMÞ the transmission function of point M. The
integration is done on the whole diffracting surface
S. f is the optical distance between M and P , and
thus eikf=f depicts the spherical wave expanding
out from point M. The inclination factor I depicts
the angle of the incident and diffracted beams with
the normal to the surface S. For small apertures
and paraxial beams, it is approximated by I ¼ �2,
so that Eq. (1) becomes

uðP Þ ¼ i

k

Z
S
uiðMÞsðMÞ e

ikf

f
dS: ð2Þ

Fig. 2. Schematic behavior, in the geometrical approximation,

of a collimated beam through a converging lens L followed by a

conical lens C. Point V is on the axicon vertex, while point X

corresponds to the abscissa z0 where a hole appears in the center

of the beam. The hatched zone between V and X is the Bessel

zone.
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The transmission function depends of course
on the considered optical elements. It is sLðMÞ
and sCðMÞ for, respectively, a lens and a conical
lens

sLðMÞ ¼ exp

�
� ik

r2

2f

�
; ð3aÞ

sCðMÞ ¼ expðikðn� 1Þr tan aÞ; ð3bÞ

where r is the distance from point M to the optical
axis, f is the focal length of the lens and n is the
optical index. Eqs. (3a) and (3b) do not take into
account a fixed phase shift induced by the thick-
ness of the lenses.

To compute the field amplitude after the conical
lens and compare it with experimental measure-
ments, we directly evaluate Eq. (2) through a
standard integration software, without any addi-
tional approximation. Experimentally, we used a
commercial conical lens from Bern optics, with
a ¼ 2� and a radius of 5 mm. It is in BK7 glass
with an optical index n ¼ 1:51. The incident
gaussian beam, provided by a laser diode with
k ¼ 852 nm, has a waist wi ¼ 645 lm, so that it
can be considered as collimated, and we have
z0 ¼ wi=b ¼ 36 mm. The signal is detected through
2D and 1D CCD cameras, and, therefore, we re-
cord the intensity of the pattern rather than its field
amplitude. Thus the comparison between experi-
mental and numerical results is performed through
the intensity transverse distribution.

Let us first illustrate the limits of the present
model with a spectacular example: we consider the
transverse distribution of the experimental beam
described above, at a distance z ¼ 115 mm ¼ 3:2 z0
after the conical lens. Fig. 3 shows the experi-
mental (dashed line) and theoretical (full line) in-
tensity distributions. While the ring diameters are
identical, it is clear that the present model is un-
able to reproduce the details of the distribution. In
particular, the experimental profile shows a thin
main ring, with inner contrasted secondary rings,
looking like diffracting rings. On the contrary, the
model predicts a unique thick ring, slightly mod-
ulated by diffraction. Thus it is clear that the dif-
fracting elements are not treated correctly in the
model.

4. Modelling of a real axicon

To enhance the model, we take into consider-
ation the bluntness of the conical lens vertex, by
introducing an hyperbolic correction to the conical
lens shape (Fig. 4). We introduce the radius of
curvature R of the hyperbole, so that the thickness
eðrÞ of the lens is

Fig. 3. Experimental (dashed line) and theoretical (full line)

transverse intensity profile of the beam in z ¼ 115 mm ¼ 3:2z0
after the axicon, obtained when the incident beam, with a waist

wi ¼ 645 lm, crosses a unique conical lens. The theoretical

profile corresponds to the modelization of the axicon with a

ponctual vertex. The vertical scale corresponds to the theoret-

ical curve, when the total light power is 100 mW. Units for the

experimental curve are arbitrary.

Fig. 4. Schematic representation of the axicon shape taking

into account the flatness of its vertex. All parameters are those

of Fig. 3, with Rexp ¼ 3:5 mm. The origin of z is the conical lens

vertex.
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eðrÞ ¼ e0 � R tan2 ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

R2 tan2 ðaÞ

s
; ð4Þ

where e0 is the thickness of the lens for R ¼ 0, i.e.,
when the vertex is a point. To evaluate the radius
of curvature Rexp of our actual conical lens, we use
a fit to adjust experimental and theoretical inten-
sity distributions. The best fit, corresponding to
Rexp ¼ 3:5 mm, leads to a satisfying concordance
between experiments and theory (Fig. 5). The re-
maining differences between both curves concern
the amplitude of the secondary rings, but not their
number neither their location. We have also ap-
plied our model to non collimated beams, i.e.,
when the conical lens is used with a convergent
lens. As shown on Fig. 6, the transverse distribu-
tion of the beam after the doublet is well repro-
duced. Therefore, the hyperbolic approximation of
the vertex appears to be good enough to predict
and optimize the use of an axicon to produce a
hollow beam.

Fundamental differences appear between the
present configuration and the predictions of [6]. In
particular, the beam size in the focal plane is al-
most 2.4 times larger than expected (Fig. 7(a)). If
this broadening is effectively linked to the curva-
ture of the conical lens vertex, we expect that it
decreases when the incident beam waist increases.
Fig. 7(b) shows that indeed, if wi is increased sig-
nificantly, the width of the ring becomes similar to
that predicted in [6].
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Fig. 5. Same as Fig. 3, except that the theoretical profile cor-

responds to the modelization of the axicon with the shape of

Fig. 4.

Fig. 6. Experimental (dashed line) and theoretical (full line)

transverse intensity profile of the beam in z ¼ 65 mm ¼ 2:7z0
after the axicon, obtained when the incident beam, with a waist

wi ¼ 645 lm, crosses a convergent conical lens doublet. The

convergent lens has a focal length f ¼ 100 mm, and is located

at z ¼ �10 mm. The theoretical profile corresponds to the

modelization of the axicon with a rounded vertex. Vertical

scales as in Fig. 3.

Fig. 7. The full lines show the theoretical transverse intensity

profile of the beam in the focal plane of the convergent conical

lens doublet for an incident waist wi ¼ 645 lm in (a) and wi ¼ 3

mm in (b). The dashed lines gives the gaussian distributions

with a width q0, predicted in [6]. Vertical scales as in Fig. 3.
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Fig. 8 shows how the ring thickness, measured
at 1=e2 of its maximum intensity, evolves as a
function of z. Typically, three zones can be de-
fined, delimited by the values z1 ’ 45 mm ’ 1:9 z0
and z2 ’ 75 mm ’ 3:1 z0. For z < z1, the main
peak of the distribution is in r ¼ 0, as it is typical
for the Bessel zone. For z1 < z < z2, the thickness
is almost constant, with q ¼ 1:6w0 ’ q0, where w0

is the minimum waist of the single convergent lens,
in the focus plane, and q0 is the value predicted in
[6]. In the third zone, referred as expanding zone in
the following, and corresponding to z > z2, q
grows almost linearly with z. This behavior is very
different from that expected. In particular, the
narrowest intensity distribution is not in the focus
plane, but in the constant zone, just after the
Bessel area. However, the smaller ring thickness
corresponds to that predicted by [6] in the focus
plane, although it occurs outside the focus plane.

But the main novelties of our model concern the
shape of the transverse distribution of the inten-
sity. As shown in Fig. 9, very different shapes are
obtained in the constant and expanding zone. In
the constant zone, the external narrow ring is ac-
companied by several secondary rings located in-
side the main one, and separated by dark rings. In
the immediate proximity of the Bessel zone, the
minimum of the dark rings is almost zero (Fig.
9(a)), and it increases as the expanding zone is
approach (Fig. 9(b)). At the edge of the constant
and expanding zones (Fig. 9(c)), the contrast be-
tween secondary and dark rings vanish, so that in

the expanding zone, the transverse distribution
may be described by one single asymmetric ring
with a tail towards its center. The resulting pattern
in the expanding zone seems to be more clean, but

Fig. 8. Intensity distribution thickness versus z. The width is

measured at 1=e2. The dashed line is the value predicted in the

focus plane in [6]. zw is the abscissa of the focus plane.

Fig. 9. Theoretical transverse intensity profile of the beam after

the convergent conical lens doublet for the same parameters as

in Fig. 6 for (a) z ¼ 55 mm ¼ 2:3z0, (b) z ¼ 65 mm ¼ 2:7z0,
(c) z ¼ 75 mm ¼ 3:1z0 and (d) z ¼ 95 mm ¼ 4:0z0. All r axes

have the same absolute scale, from r ¼ 0 mm to r ¼ 2 mm.

Vertical scales as in Fig. 3.

36 B. D�eepret et al. / Optics Communications 211 (2002) 31–38



it requires the use of a mask to suppress the in-
tensity at the center of the ring, leading to new
diffracting distortions of the pattern. On the con-
trary, in the constant zone, and in particular in the
proximity of the Bessel zone (in z1), a mask ad-
justed to the first dark ring cleans the pattern to
the single external ring, without additional dis-
tortion. The resulting pattern is a single narrow
ring with two stiff sides. Thus the constant zone
appears to be the most appropriate to produce
clean hollow beams.

Another important aspect in the experimental
realization of hollow beams is either the total light
power inside the final beam, or the peak intensity
of the ring. The first point depicts the losses in-
troduced by the mask, while the second one is
linked to the thickness of the ring. If the mask is
placed at its optimal location z1, as described
above, it introduces losses of 22%, corresponding
to the part of power distributed in the secondary
rings. This value have to be compared to that
obtained when the mask is placed in the focus
plane, as suggested in [6]. In this case, the losses
depend naturally on the mask radius, and thus of
the ring thickness. To obtain a thickness compa-
rable to that in z1, we introduce 40% of losses. To
reduce losses to 22%, it is necessary to increase the
thickness by a factor 2.3: it is clear that the use of a
mask in z1 produces narrower rings with less los-
ses. As a consequence, as it can be easily realized
by comparing Figs. 7(a) and 9(a), the peak inten-
sity of the ring in almost four times larger in z1
than in zw. So from the energetic point of view

also, the technique described above leads to a
substantial gain.

In the whole preceding discussion, we have
emphasized one given configuration, with a lens
with focal length f ¼ 100 mm, with a distance
d ¼ 10 mm between the lens and the axicon. The
conclusions apply of course to other values of f
and d. As an example, we illustrate in Fig. 10 the
hollow beam obtained for a different set of pa-
rameters, using the above technique. The resulting
pattern is a single ring with a stiff inner border, and
losses introduced by the mask are measured to be
0:19	 0:01, in good agreement with the theory.

5. Conclusion

We have shown that taking into account the
curvature of the conical lens vertex leads to an
accurate description of the beam transformation
through a conical lens and a convergent conical
lens doublet. Calculations are in excellent agree-
ment with the experiments. We show that the use
of a mask allows to obtain an excellent quality
hollow beam, assuming that the mask is located
adequately, just after the Bessel zone. The quality
of the hollow beam consists in a single regular
ring, with an intensity going abruptly to zero on its
inner side, and no residual intensity in the center of
the ring. This enables the use of such beams in
interferometric experiments, as e.g., in the real-
ization of optical lattices [15]. In most of the ap-
plications, the present system will win in
convenience if a second conical lens, located just
after the Bessel zone of the first one, is added to
the convergent conical lens doublet. Indeed, the
second axicon will rectify the phase surfaces and
fix the ring radius versus propagation. A third
conical lens before the doublet may be added to
control independently R0 and q [16].
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