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Abstract 

Temporal evolution of the laser electric field at any point of the transverse plane of a bimode CO, laser is reconstructed 
using three fast detectors located at different points in the transverse plane. We investigated a situation in which the 
dynamics is particularly rich i.e. displaying different periodic and chaotic regimes. A comparison between numerical 

analysis and experiments allows us to perform a critical evaluation of the method. 

1. Introduction 

In the past few years, the spatio-temporal nonlinear 
dynamics of lasers have been intensively studied [l-5]. In 
particular, the transverse dynamics, where the laser electric 
field varies at different points of the transverse plane, 
contains important nonlinear features, strongly linked to 
the turbulence. However the experimental study of the 
transverse dynamics is often quite difficult due to the lack 
of fast-response-detector arrays allowing the dynamics to 
be followed on time intervals comparable with the tempo- 
ral evolution of the phenomena. For example with CO, 
lasers, detectors based on thermal plates are completely 
inadequate since they deliver only a time average intensity 
with time scale of 1 s for the transverse pattern whose time 
scale is of 1 l.~s. In this work we evaluate a new method 
using several point-like fast detectors locally set in the 
transverse pattern of the laser. Their outputs allow us to 
reconstruct the total and real-time transverse spatio-tem- 
poral dynamics. 

Here, we focus on the case of a bimode laser, but the 
method can be extended to a multimode laser using an 
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adequate number of detectors. In the case of the q = 1 
family, corresponding to the TEM,, and TEM,, modes 
here considered, the degeneracy between the empty cavity 
eigenfrequencies is lifted by the cavity astigmatism. De- 
pending on the amount of this degeneracy lift Av, the 
occurrence of frequency locking leads to the so-called 
TEM& hybrid doughnut mode [6-91. This mode results 
from the linear bistable superposition of the TEM,, and 
TEM,, Gauss-Hermite modes with a constant optical phase 
difference of either + n-/2 or - n-/2 [lO,l 11. On the other 
hand, far from degeneracy i.e. for high Av values, the 
intensity of the electric field oscillates periodically at the 
beat frequency A vb = A v between the modes. In that case, 
a so-called “unlocked” doughnut is created whose dynam- 
ical temporal behavior is given by three characteristic 
variables corresponding to the modal amplitudes of each 
mode and the optical phase difference @ between the 
modes. 

In the experiments of Ref. [12], two fast detectors have 
been used to investigate the phase or antiphase dynamics 
of a bimode laser. But this method does not permit to 
derive the time evolution of @ since at least three simulta- 
neous measurements are needed to follow three variables. 
Here, we monitor the spatio-temporal dynamics of a bi- 
mode laser with three fast detectors, two on the nodal lines 
of the pattern and one on the first bisectrix. From the 
detected signals, the time evolution of three relevant vari- 
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ables allows us to reconstruct the time evolution of the 
electric field at any point of the transverse plane. In 
analogy with Tamm’s study [ 1 I], we have chosen a class B 
laser, in our case a CO, laser. When some specific experi- 
mental conditions for the relaxation rates are met, Tamm 
has shown that a bimode HeNe laser produces a period- 
doubling cascade leading to chaos while decreasing A v. In 
the CO, laser with saturable absorber (LSA) which is 
considered here, similar experimental conditions have been 
reached. It has been noticed that the LSA also follows a 
period-doubling cascade as a function of Av juSt before 
reaching the locking condition. 

Our reconstruction method has been tested on numeri- 
cally generated data. Thus in the first part of this work, the 
theoretical description of the laser is given in the frame- 
work of the so-called modal expansion [ 131, and numerical 
results are reported and analysed. Moreover, the sensitivity 
of misalignement or misposition of the detectors has been 
investigated. In the second part, we report the experimental 
spatio-temporal behavior of the “unlocked” doughnut, far 
and near locking, and we analyze the temporal evolution of 
the three characteristic variables mentioned above in order 
to illustrate the interest of the technique. 

2. Numerical analysis 

We consider a bimode class B laser which is governed 
by the mutual interaction of the transverse TEM,, and 
TEM,, Gauss-Hermite modes noted to as B,( p,cp) and 

B,( P,40): 

2 l/2 

B,(w) = ; ( i 2pew( -p2) coscp, 

2 I/2 

B2(P#) = ; ( 1 2pexp( -p’) sinp, (1) 

where p and cp are the polar coordinates in the transverse 
plane, i.e. perpendicular to the z axis of the cavity, and the 
radial coordinate p is normalized with respect to the beam 
waist. The laser field E may be written as 

E( p,rp,z,t) -F( p,cp,t)exp[i(kez- o,t)]+c.c., 

(2) 

where F is the slowly varying envelope of the field, 
independent of z in the mean field limit. The reference 
frequency we is the degenerate eigenfrequency of the 
modes TEM,, and TEM,, in absence of astigmatism and 
kc is the related wave-vector. The following modal expan- 
sion is considered, as analysed in detail in Ref. [13]: 

F( P&J) = g,(t)B,( VP) + g,(t)B,( PN) 9 (3) 

where g,(t) and g2(t) are the complex modal amplitudes 
of modes B, and B, respectively. From Refs. [13] and 

1161, the temporal evolution of these amplitudes is gov- 
erned by 

dg, _= 
dt 

-K (1 +ai)gi-Id~lpdpBi(AP-AP) , [ 1 (4) 
with i = 1,2 and where K is the field relaxation rate, A the 
pump parameter and P the polarisation of the active 
medium. x and p( p,cp,t) are the absorption coefficient 
and polarisation of the saturable absorber respectively. In 
order to take care of the astigmatism present in the experi- 
ments, we introduced the detunings ai given by 

6.+-w* 
a.= - 

1 
K ’ 

(9 

where wi and wa stands for the empty cavity frequency of 
modes B, and B, respectively. Hq. (4) is coupled to the 
Bloch equations for the active medium and saturable ab- 
sorber. The active medium of a class B laser is modeled by 
an equation for the population inversion where the adia- 
batic elimination of P, P = FD, has been performed: 

dD 
-= -y,,(lF/2D+D-1). 
dt (6) 

For the absorbing medium, we consider the simplest de- 
scription with both polarisation p and population inver- 
sion 5 adiabatically eliminated, leading to 

where a is the relative saturability of the absorber with 
respect to the active medium. The set of integro-differen- 
tial equations given by Hqs. (4)--(7) has been solved 
numerically and the dynamical regimes of the laser are 
analysed with respect to the frequency difference Av 
between the modes: 

Av a2 - a1 
-=- 

K 2?r . 
(8) 

Writing the complex modal amplitudes as gj 
= fi exp(icp,) (i = 1,2), the relevant variables consid- 
ered throughout this paper are the modal intensities Zj, and 
the relative phase between the modes @ = ‘p, - (pZ. In 
order to display synthetically the dynamical regimes of the 
laser as well as to locate the control parameter range where 
the transverse pattern of the LSA exhibits instabilities, a 
theoretical bifurcation diagram is shown in Fig. la. The 
maxima of the temporal signal 1i( t) are reported versus the 
control parameter A v which has been swept for increasing 
and decreasing values. Other LSA parameters have been 
chosen to match with the experimental situation. When A v 
is high (Av> 29.8 X 10w3~>, the dynamical regime is 
periodic. As Av decreases (29.8 X low3 < AV/K < 23.7 
X 10-3), a period doubling bifurcation followed by chaos 
occurs. At lower A v values, the system jumps on different 
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Fig. 1. Bifurcation diagram showing the temporal maxima of I,(t) 
as a function of the control parameter Av swept increasingly 

(squares) and decreasingly (dots) for (a) the LSA and (b) the laser 
without saturable absorber. The numerical integration has been 

performed with the following set of laser parameters: in (a) A = 2, 

h= 0.5, a = 20 and y,, /K = 0.1; in (b) same parameters except 
‘T= 0. 

periodic and chaotic attractors. Finally at A v smaller than 

19.5 X 10V3~, frequency locking occurs, resulting in a 
stationary behavior. When Au = 0, both stationary phase 
values Sp = + r/2 are simultaneously stable and the laser 
output patterns are doughnuts of right and left helicities. 
When AV is increased starting from zero, the bifurcation 
sequence corresponds first to a stationary solution, stable 
up to AV = 30.3 X 10m3~, and for higher A v to a periodic 
solution. As shown in Fig. la, bistability is found between 
the stationary branch and the periodic or chaotic attractors 
for 19.5 X 10M3 < AV/K < 30.3 X 10p3, a feature which 
has also been evidenced in the experiments. 

Let us illustrate the effect of the saturable absorber on 
the laser dynamics. Fig. lb is the bifurcation diagram of a 
laser without absorber i.e. all parameters are the same as in 
Fig. la except x= 0. While decreasing A V, we observe 
periodic solutions, then a narrow chaotic window and 
finally a stationary branch. The comparison with Fig. la 
shows clearly that the different temporal behaviors are 
closely related to the presence of a saturable absorber 
inside the cavity. 

The intensity of the electric field at the point P( p,cp) 
on the transverse pattern reads 

Zp.&) = IFI2 

=G(p)[Z,cos*~+Z2sin2~+~cos@sin2~], 

(9) 

where 

G( p) = zp2 exp( -2~‘). (10) 

The fist two terms of & are proportional to the intensi- 

ties of the two modes respectively, and the last one is an 
interference term. The relevant variables I,, Z2 and CD may 
be obtained from the intensity measurements Zp,o, Z,,W,4 
and Z p,W,2 given by the three detectors. Indeed, from (10) 
we get 

Z Z 
zl=*, z2=gg. (11) 

The phase @ may be obtained from the Zp.T,4 intensity: 

cos @= 
21,.,/4 - Zp.0 - Zp,?r/Z 

2/G . 
(12) 

Note that Eq. (12) does not give the sign of @, but as it 
does not appear in Eq. (9), this is not a problem. The key 
idea of the experiments is to reconstruct the pattern in the 
whole transverse plane by putting these results back into 
(10). Note that other configurations of the three detectors 
may be also used at the price of a less direct connection 
between the relevant variables and the detectors outputs. 

Practically, difficulties may arise if the position of the 
detectors is not perfectly known. The importance of this 
effect has been determined through a numerical study. In 
order to simulate experimental conditions, let us suppose 
that the intensities ZpVO, Zp,?r,4 and Zp.?r,2 are given by 
detectors located at three positions corresponding to a 
slight angular displacement from the nodal lines and their 
bisectrix. Using these numerical data, we derive from Eq. 
(11) and Fq. (12) a new set of relevant variables Z;, Zi and 
@‘, to be compared with I,, Z2 and @. As an illustration, 
Fig. 2 displays the temporal T periodic signals I, and I@1 
and their counterparts Z; and I@‘1 reconstructed from the 
signals taken at cp = 8”, 82”, 45” and cp = 18”, 87”, 45” 
respectively. These angular displacements have been cho- 
sen far above the accuracy with which the detectors can be 
located. This test demonstrates that the method allows a 
faithful reconstruction of amplitude and phase evolutions 
even if the detectors are slightly mispositioned, the only 
effect being a slight distortion of the signals, not sufficient 
to hide the underlying dynamics. From these data, we have 
also obtained using Eq. (9) the transverse pattern and 
checked the good comparison between both cases. 
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Fig. 2. Temporal evolution of (a) the modal intensity I,(t) and (b) 
absolute phase kD(t)j for AV = 0.025. Laser parameters are the 
same as in Fig. 1 except A= 0.6. Normal, dotted and bold lines 
correspond to data evaluated at azimuthal angles cp = (0”. 90”, 4.5’1, 
(8’, 82”, 45”) and (18’, 87”, 45”) respectively. In (b), the plateaus 
arise at @‘=O and v because the function cos[@‘(t)] derived 
from Eq. (12), if greater (lower) than 1 (- 11, is set to 1 (- 1). 

In conclusion, stronger distortion of the phase evolution 
is possible in the case that the detector signals suffer from 
some rescale/translation effect. In this case the main 
effects are to distort the phase evolution so that it does not 
extend to the complete [O,Zrr] interval, but the underlying 
dynamics still remains clearly visible. 

3. Experiments 

The single line CO, laser is composed of a Fabry-Perot 
resonator limited by a plane mirror which acts as an output 
coupler and a grating [14]. Two lenses inserted in the 
cavity, one of which is mounted on a rotation/translation 
stage, allow the transverse mode spacing between the 
TEM, and TEM& modes to be continuously changed. 
Note that the aperture of the intracavity iris limits the 
transverse modes oscillating in the cavity to the TEM,, 
TEM,, and TEM,,. The transverse mode spacing between 
the q = 0 and q = 1 families is around 20 MHz. Although 
the amplifier cell is closed by antireflection coated plates 
in order to keep astigmatism of the cavity at a level as low 
as possible, a frequency degeneracy lift AV between the 
modes of the family q = 1 occurs. Astigmatism may be 
partially or totally compensated by tilting and translating 
the lens. Note that experimentally, we cannot measure the 
frequency difference A v between empty cavity modes, but 
only the beat frequency Av, between the laser modes, 

which is in most cases close to Av, the main exception 
being locking. Control of astigmatism allows Av, to be 
varied continuously in the range 0.1 to 1 MHz. When there 
is locking, A Y,, = 0, A vb never takes a value between 0 
and 100 kHz, because of locking. In this laser without 
intracavity saturable absorber, a period-doubling regime is 
observed in a very narrow range of the cavity length 
variation around A Y,, = 100 kHz, in good agreement with 
Fig. lb. 

Osmium Tetroxide (0~0,) has been introduced at a low 
pressure as an intracavity saturable absorber in order to 
increase the range of the parameter space in which instabil- 
ities are observed. In these conditions, the laser is tuned on 

the lOP14 line of the 10.6 Frn branch, to keep the laser 
emission in coincidence with the strongest 0~0, absorp- 
tion. Let us recall that in a monomode TEM, CO, LSA, 
three main temporal regimes are usually observed depend- 
ing on the absorber pressure pabs. At low pressure ( pab, < 
30 mTorr), the laser is stable and delivers a time indepen- 
dent output. When the pressure is increased, the system 
undergoes a Hopf bifurcation and a sinewave modulation 
is created. At higher pressure (pabs > 100 mTorr), the 
temporal regime is a self-pulsing regime called passive 
Q-switching (PQS) in which the time evolution of the laser 
intensity exhibits very different shapes depending on the 
operating point [15]. The present experiments on the bi- 
mode LSA have been performed in the lower pressure 
range, where the monomode TEM, LSA delivers a time 
independent output. In good agreement with the numerical 
simulations, we have observed in this case period doubling 
and chaos in a wider range of variation of Av, (60 
< Av, < 120 kHz) than in the case of the laser without 
absorber. 

Using three HgCdTe infrared detectors, we have fol- 
lowed the temporal evolution of the intensities at the P,,?, 
P p,T/4r and Pp,r12 P oints of the “unlocked” doughnut, m 
order to reconstruct the real time evolution of the pattern 
through the three variables I,, Zz and 0. Two situations 
have been studied: (i) the amount of astigmatism, i.e. Av, 
is swept at a fixed cavity length and (ii) AV is kept fixed 
and the cavity detuning is swept. 

Far from locking (Av, > 1 MHz) and without ab- 
sorber, I, and I, are almost time independent, as it may be 
expected from Refs. [4,12]. Fig. 3a shows I, and I, for a 
smaller value of Au (Au, - 770 kHz), when a sinewave 
appears superimposed on the DC component of the intensi- 
ties. Fig. 3b shows that in this case, @ evolves linearly 
with time, as if it was proportional to the beat frequency. 
However, I@[ does not span the whole interval [O,r]. As 
shown in the numerical analysis, this could originate from 
mispositionning of the detectors. Moreover, I,, Z2 and ]@I 
are deduced from the quantitative comparison of intensities 
delivered by three different detectors. We developed a 
calibration method allowing us to obtain the actual intensi- 
ties. However, uncertainties together with a possible high 
frequency cutoff of the detectors could explain the limited 
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Fig. 3. Periodic oscillations far from locking (Av, = 770 kHz): in 
(a), modal amplitudes of the doughnut modes of the CO, laser 

without absorber with the amplitude of the DC components being 

reduced in order to show the modal oscillations; in (b), I@(t)\. 

Fig. 4. Time evolution near the locked state (A vi, = 100 kHz) (a) 

of the 2T oscillations of the doughnut mode amplitudes, (b) of 

INrI. 

span of 1@1 in Fig. 3b. Another possibility is that we are 
dealing with a behavior where the two modes do not 
alternate completely but coexist. 

An additional problem appears in the areas where the 
intensities reach levels very close to 0: the signal to noise 
ratio decreases very much, generating very large distortion 
particularly on 1@1, as the zero intensity value is a critical 
point where the phase is not determined. In that case, the 
real evolution of the pattern can only be deduced by 
continuity. 

Let us now describe the evolution of the dynamics of 
the LSA as a function of astigmatism. Starting from the 
regime described in the previous paragraph (A v,, = 1 MHz) 
and as astigmatism is decreased down to Av, = 100 kHz, 
we observe that the modal amplitude oscillations increase 
regularly but remain periodic. This behaviour corresponds 
to an increase of the interaction strength between the two 
modes through the active medium. For Av, = 100 kHz, it 
leads to the appearance of second harmonic components in 

0 5 10 15 20 25 30 35 40 45 

Time (p) 

the Fourier spectrum of the signal, as pointed out in Refs. 
[16,17]. Note that in the range 100 kHz to 1 MHz lies the 
relaxation frequency of the laser (about 200 kHz). Al- 
though resonance mechanisms are probably enhanced when 
the beat frequency is close to the relaxation frequency, it 
appears that the phase evolution remains linear with time. 
When we further decrease Av, the modes lock to a 
common frequency after a bifurcation sequence followed 
by chaos, as also observed numerically. Now, if starting 
from locking, the astigmatism is increased, the system 
evolves with hysteresis from a locked to an “unlocked” 
doughnut showing evidence of bistability between locked 
and unlocked states. The “route” from unlocking to lock- 
ing going through a period-doubling cascade is richer than 
the reverse one in’ good agreement with the numerical 
simulations as shown in Fig. la. 

Let us now consider the case where the astigmatism is 
kept fixed, while the cavity detuning is swept. A behaviour 
similar to that described above is obtained, with a period- 
doubling cascade observed as a function of the fine tuning 

Fig. 5. Experimental pattern reconstruction over one period (T= 22.1 p,s) of the unlocked doughnut in the 27’ regime. The time interval 

between successive patterns is 1.5 ps. 
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Fig. 6. Experimental pattern reconstruction over one period (T= 70 JU) of the unlocked doughnut in the 7T regime. The time interval 

between successive patterns is 1.5 bs. 

of the cavity length before the modes lock to a common 
frequency. The bifurcation diagram as a function of the 
cavity detuning shows oscillations at T, 2T and 4T culmi- 
nating in a chaotic behavior, inside of which a 7T periodic 
window appears. The system emerges from chaos when 
the two modes lock in frequency. Fig. 4 gives an example 
of 2T oscillations in which the signal has a phase evolu- 
tion very similar to that of a rotated unlocked doughnut, 
with a distortion in the second part of this phase evolution 
making it asymmetric. 

In order to analyze the spatio-temporal dynamics, we 
reconstruct the evolution of the transverse pattern intensity 
distribution in the 2T periodic regime (Fig. 5). During half 
period of the signal, a two-spot pattern oriented along the 
first bisectrix is successively followed by a doughnut and a 
two-spot pattern oriented along the other bisectrix. This 
full sequence is repeated during the second half period. 
Rotating patterns, not shown here, are only obtained when 
the modal amplitudes oscillate in antiphase. As a function 
of the detuning of the resonator, we have observed 7T 
periodic oscillations and the corresponding pattern evolu- 
tion becomes much more complex, as shown in Fig. 6. 

4. Conclusion 

Using three fast detectors, the spatio-temporal dynam- 
ics of a bimode laser has been examined and found in 
good agreement with numerical simulations. From the 
detected signals, we have reconstructed the time evolution 

of the electric field at any point of the transverse plane. 
Limitations of the method arise from misalignement and 
calibration errors of the detectors: extending this method to 
family q = 2 or mixed fundamental-doughnut dynamics 
seems now quite difficult due to the additional problems 
which would arise in an attempt to calibrate and align five 
detectors. A good qualitative agreement has been found 
between the theory and the experiments on the bifurcation 
diagrams obtained with and without intracavity absorber: 
saturable absorber presence expands the control parameter 
range in which instabilities are observed. 
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