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Abstract. Either single- or multi-mode emission from a diode laser coupled to an external
cavity containing a cell filled with caesium vapour has been observed. The oscillation frequency
of each operating mode of the laser is locked to a hyperfine transition or crossover resonance of
the saturated absorption spectrum of the caesium D2 line. A model based on the rate equations
for external-feedback diode lasers, modified in order to include frequency-dependent losses and
dispersion of the laser field through the atomic absorber, has been developed. We show that
the atomic absorption resonances determine the lasing frequencies. A multi-stable behaviour is
obtained.

1. Introduction

In recent years, diode lasers exposed to optical feedback from an external cavity containing
an atomic absorber have been widely investigated, mainly for the purpose of improving
the spectral performance of the lasers and achieving an absolute frequency stabilization,
for applications, for instance, in optical communications, high-resolution spectroscopy and
metrology. The D2 absorption lines of Cs and Rb atoms lie within the gain curve of
conventional diode lasers. The incorporation of a cell of these atomic vapours in an
external cavity optically coupled to a diode laser provides dispersive losses. The resulting
frequency-dependent changes of the laser gain and refractive index allow one to lock the
laser frequency to the atomic resonances and to correct for amplitude and phase fluctuations
of the laser field [1]. Frequency locking and quenching of the spectral linewidth have
been achieved by employing high-contrast sub-Doppler atomic resonances as dispersive loss
mechanisms. Different optical methods have been developed to generate these resonances
within a feedback cavity, such as techniques of saturation spectroscopy [2], Faraday rotation
[3, 4], resonant phase conjugation [5], velocity-selective optical pumping [6] and Doppler-
free collinear polarization spectroscopy [7].

In this paper, we report on spectral measurements performed on an extended-cavity
diode laser containing a Cs cell in a saturation spectroscopy configuration similar to that
discussed in [2]. In the feedback scheme considered, the light field emitted from the output
facet of the diode laser, tuned to the D2 line, passes through the atomic vapour cell as
a pump field and, after being attenuated by the vapour, is retroreflected and used as a
counterpropagating probe field, which is fed back into the laser cavity. At the centre of
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any hyperfine transition of the D2 absorption line, the pump beam bleaches a hole in the
absorption spectrum of the weaker probe beam. Therefore, the probe transmission, and hence
the optical feedback intensity, is resonantly enhanced when the laser frequency matches one
of the principal transition or crossover lines. The saturated medium also modifies, due to its
dispersive properties, the feedback phase. As an effect of the frequency-dependent changes
produced by the intracavity absorber on the feedback parameters, we observe single-mode
emission with frequency locking to an atomic resonance, as well as multi-mode operation
with each oscillation frequency corresponding to a different sub-Doppler feature of the
atomic absorption spectrum.

A diode laser subject to optical feedback from an external reflector is a multi-stable
system, with regard to the selection of the external-cavity modes [8, 9]. Depending on the
feedback conditions, the coexistence of several longitudinal modes involves either mode-
hopping instabilities [10] or chaotic temporal dynamics [11–13]. To understand how the
presence of an intracavity atomic absorber modifies the mode structure of the extended-
cavity diode laser, we have generalized the Lang–Kobayashi equations [9] in order to
include the dependence of the feedback parameters on the laser frequency and analysed the
steady-state solutions of these equations. A similar approach has been used in [1, 3], to
explain the occurrence of frequency locking to an atomic resonance and linewidth reduction
of the laser emission. In these works, a single Doppler-free resonance has been considered.
In this paper we include, in the laser rate equations, the dependence of the feedback intensity
and phase on the whole spectrum of the D2 line and demonstrate that, under certain operating
conditions, more than one sub-Doppler resonance can satisfy the lasing conditions.

This paper is organized as follows. In section 2 we describe the experimental apparatus
and present the observed optical spectra. In section 3 we introduce the rate equations
with frequency-dependent feedback parameters and discuss their steady-state solutions. We
focus on the diode laser physics, but also include a short description of the calculation of
the saturated absorption and dispersion coefficients of the Cs atoms. Conclusions and final
remarks are presented in section 4.

2. Experiment

2.1. Apparatus

The experimental set-up is shown schematically in figure 1. The observations were
performed using a Spectra Diode Laser SDL-5400, oscillating at a wavelength around
850 nm. The laser was optically coupled, through an antireflection-coated collimating
objective, to an external cavity terminated by a 1200 line/mm Littrow-mounted diffraction
grating, placed 46 cm from the laser. A 4 cm long cell containing Cs vapour at the
equilibrium density at room temperature was inserted within the external cavity. A
fraction of the laser intensity was extracted from the external cavity by means of a
beamsplitter with less than 10% reflectivity and used for the detection. To avoid unwanted
feedback from optical surfaces in the measuring equipment, the extracted beam propagated
through a magneto-optical isolator providing 40 dB of attenuation for counterpropagating
light. A scanning confocal Fabry–Perot spectrum analyser, model 240 by Coherent,
with a free spectral range1νFP = 1.5 GHz, detected the optical spectrum of the laser
emission. Absolute optical frequency measurements were performed by comparison with
the oscillation frequency of a reference diode laser, locked, through a standard technique of
hybrid optical and electronic feedback [14], to theF = 4→ F ′ = 5 transition of the D2
Cs line.
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Figure 1. Scheme of the experimental set-up. DL, diode laser; CO, collimating objective;
Cs, caesium cell; BS, beamsplitter; G, diffraction grating; PZT, piezoelectric transducer; Iso,
magneto-optical isolator; Ref, reference diode laser; FP, scanning confocal Fabry–Perot spectrum
analyser.

The diffraction grating terminating the external cavity was mounted on a piezoelectric
transducer, fixed to a mirror mounting. Continuous tuning of the laser wavelength within
a range of tens of nanometres was achieved by combining the rotation of the grating and
the variation of the cavity length through the piezoelectric transducer. For laser frequencies
far from the Doppler-broadened absorption line of the atoms, the feedback power ratio was
estimated, including losses at the optical surfaces within the external cavity, as about 30%.

2.2. Self-locking and multi-mode emission

By tuning the laser frequency, through the rotation and fine translation of the grating, to the
hyperfine transitionF = 4→ F ′ = 5, we observed monomode self-locked operation. In
figure 2, the detuning between the oscillation frequency of the laser and the line centre of
the atomic transition is plotted as a function of the voltage applied to the piezoelectric
transducer, which scans the length of the external cavity. The detuning values were
measured from the optical Fabry–Perot spectra. The curve is composed of two identical
branches, since two free spectral ranges of the external cavity are scanned by the total voltage
variation. Measurements performed far from the atomic absorption lines showed that the
laser frequency, when unlocked, changed almost linearly with the applied voltage, with a
slope of∼ 80 MHz V−1. Figure 2 shows, instead, that at the atomic line centre the frequency
was insensitive to voltage changes. Thus, the laser mode jumped onto the resonance and
remained locked there, while it would otherwise be scanning. The flat part of the curve
covers a voltage interval of about 2 V, which would correspond, out of resonance, to a
frequency change of∼160 MHz. This value represents the locking range around the atomic
transition. Figure 2 shows a slight variation of the laser frequency within the locking range.

Out of the locking range, we observed multi-mode emission, as demonstrated by the
multi-peaked optical spectra shown in figure 3. These spectra were obtained by scanning the
external-cavity length, so as to move the laser frequency out of theF = 4→ F ′ = 5 line
in the low-frequency direction. Figure 3(a) shows the simultaneous excitation of several
frequencies separated by 320 MHz, corresponding to the free spectral range1νex of the
external cavity. In this situation, the mode selection is dominated by the optical properties
of the empty cavity and appears not to be modified by the presence of the atomic absorber.

The grating providing the external feedback has a very low resolving power, compared
to the FSR of the external cavity, so that it cannot select a single mode. The simultaneous
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Figure 2. Tuning of the laser frequency versus the
external-cavity length scanned by application of a
voltage to the piezoelectric transducer.1ν indicates
the difference between the laser frequency and the
frequency of the D2 hyperfineF = 4 → F ′ = 5
transition in caesium. Two free spectral ranges of
the external cavity are scanned by the total voltage
variation. The plateaux indicate self-locking of the laser
frequency to the resonance of the intracavity atomic
absorber.

Figure 3. Optical power spectra of the laser emission
obtained from a Fabry–Perot scan. Laser multi-
mode operation is present with oscillation frequencies
resonant in (a) with the empty-cavity1νex frequencies
and in (b) with Lamb dips and crossover resonances
of the saturated absorption spectrum of the intracavity
atomic vapour.1ν denotes the laser detuning from the
D2 F = 4 → F ′ = 5 transition. The free-spectral
range of the external cavity,1νex, and of the Fabry–
Perot,1νFP, are denoted.

excitation of several external-cavity modes in a diode laser exposed to optical feedback
from a diffraction grating was reported, for instance, in [15].

In the situation illustrated in figure 3(b), where the laser frequency was within the
Doppler linewidth of the D2 transitions, the absorber determines entirely the selection of
the laser frequencies. Each laser frequency corresponded, within the 10 MHz resolution of
the Fabry–Perot spectrum analyser, to a different sub-Doppler resonance of the D2 absorption
spectrum [16]. Inside the external cavity which provided the feedback to the diode laser, two
counterpropagating laser beams, oscillating at the same frequency, excited the Cs vapour
in a saturation spectroscopy configuration [16, 17]. The D2 hyperfine transitions involved
in figure 3(b) are from the ground hyperfine stateF = 4 to the excited hyperfine states
F ′ = 3, 4 and 5. An energy level scheme of the Cs D2 line is shown in figure 4, where
the principal Lamb dips and the crossover resonances are shown. The numerical values
for the spectroscopic parameters relative to the considered Cs transitions can be found, for
instance, in [16]. In figure 3(b), the detuning of peak A, with respect to the reference
F = 4→ F ′ = 5 frequency, matched the position of the crossover resonance involving the
transitions fromF = 4 to F ′ = 4, 5. Peak B corresponded to theF = 4→ F ′ = 4 Lamb
dip, C to theF = 4→ F ′ = 3, 4 crossover resonance and D to theF = 4→ F ′ = 3 Lamb
dip.

Similar spectral observations were also performed with an external-cavity length of
68 cm, corresponding to an FSR of 220 MHz. We have verified that, while the frequency
separation of the modes associated with the empty external cavity changed accordingly, the
spectrum of the multi-mode emission induced by the absorber was unaffected by the change
of the cavity length.
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352 THz Figure 4. Partial energy diagram of the levels
participating in the caesium D2 absorption spectrum
explored in the present work. Vertical lines indicate
Lamb dips and crossover resonances. The crossover
resonances occur for a laser detuning halfway between
the frequencies of neighbouring Lamb dips, as shown
by the broken curves.

3. Theory

3.1. Saturated absorption and dispersion coefficients of caesium atoms

We calculated numerically, from the density matrix equations, the absorption and dispersion
coefficients associated with both the pump and probe fields. The laser electric field is
assumed to propagate in thez-direction and its complex amplitude is written as

E(z, t) = E+(z, t)e−i(ωt−kz) + E−(z, t)e−i(ωt+kz) (1)

whereE+ is the saturating pump field andE− is the probe field. For the atomic density
matrix ρ, the following notation is used:

ρi ′4 = σ+i ′4(z, t)e−i(ωt−kz) + σ−i ′4(z, t)e−i(ωt+kz) (2)

where ρi ′4 are the off-diagonal matrix elements corresponding to the optical transitions
4→ i ′ (i ′ = 3′, 4′ and 5′).

In the rotating-wave and slowly varying envelope approximations, the density matrix
equations are

∂σ±i ′4
∂t
= (i1±i ′4− γi ′4)σ±i′4− iE±

h̄

[
di ′4(ρi ′i ′ − ρ44)+

∑
j ′ 6=i ′

dj ′4ρ
∗
j ′i ′

]
(3a)

∂ρi ′j ′

∂t
= −(iωi ′j ′ + γi ′j ′)ρi ′j ′ − i

h̄

[
dj ′4
(
E+∗σ+i ′4+ E−∗σ−i ′4

)− di ′4(E+σ+j ′4∗ + E−σ−j ′4∗)]
(3b)

∂ρi ′i ′

∂t
= −(0i ′ + γr)ρi ′i ′ + 2di ′4

h̄
Im
{
E+∗σ+i ′4+ E−∗σ−i ′4

}
(3c)

∂ρ44

∂t
= γr

(
ρ0

44− ρ44
)+∑

i ′

(
ri ′40i ′ρi ′i ′ − 2di ′4

h̄
Im
{
E+∗σ+i ′4+ E−∗σ−i ′4

})
(3d)

with i ′ 6= j ′ and i ′, j ′ = 3′, 4′ and 5′. The detuning coefficients1±i ′4 are defined as

1±i ′4 =
(

1∓ v
c

)
ω − ωi ′4 (4)

wherev is thez-component of the atom velocity andωi ′4 is the angular-frequency separation
of levelsi ′ and 4. An atom moving towards the pump beam with velocityv sees its frequency
upshifted by an amount(ωv)/c (to lowest order inv/c) while the frequency of the probe
beam is, for the same atom, downshifted by an amount−(ωv)/c. In equations (3), the
angular-frequency separation of upper levelsi ′ and j ′ is indicated asωi ′j ′ . The decay
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rates of the off-diagonal density matrix elements are defined asγi ′4 = 0i ′/2 + γr and
γi ′j ′ = (0i ′ +0j ′)/2+ γr , where0i ′ is the natural linewidth of leveli ′ andγr is the inverse
mean transit time of an atom moving at thermal velocity through the laser beam section.
The rateγr [16] describes the injection of fresh atoms into the interaction region, as well as
the loss of interacting atoms. For atoms entering the beam in thermal equilibrium, only the
populationρ0

44, assumed to be proportional to the Zeeman degeneracy of the ground state,
is different from zero. The coefficientdi ′4 denotes the dipole matrix element andri ′4 the
branching ratio relative to the transition 4→ i ′. Equations (3) allow for the simultaneous
interaction of the two counterpropagating laser fields with all hyperfine transitions 4→ 3′, 4′

and 5′, so that coherent effects related to the excitation of the atomic coherences between
excited states, which are not negligible for a detuned atom–field interaction, are taken
into account. This four-level model leads to a satisfactory agreement with the saturated
absorption spectra commonly observed in the configuration considered.

The density matrix is a function of the atomic velocityv, which appears explicitly in
equations (3) through the detuning coefficients1±i ′4. If the number of atoms per unit volume
with velocity v is N(v) dv, their contribution to the spatio-temporal field evolution is, from
the Maxwell equations,(

∂

∂z
+ 1

c

∂

∂t

)
E± = i

4πω

c

[∑
i ′
di ′4σ

±
i ′4(v)

]
N(v) dv (5)

with i ′ = 3′, 4′ and 5′. According to equation (5), the absorption and dispersion coefficients
for the field amplitudesE± are defined as

α± = Im

{
1

E±

[
4πω

c

∫ ∑
i ′
di ′4σ

±
i ′4(v)N(v) dv

]}
(6a)

β± = Re

{
1

E±

[
4πω

c

∫ ∑
i ′
di ′4σ

±
i ′4(v)N(v) dv

]}
. (6b)

The steady-state solution for the optical atomic coherencesσ±i ′4 was computed
numerically from equations (3) for different fixed values of the laser oscillation frequencyω

and the atomic velocityv, and the coefficientsα± andβ±, as functions ofω, were obtained
from equations (6) by integration over the velocity distribution, assumed to be Maxwellian,

N(v) = N0

u
√
π

e−(v/u)
2

(7)

with N0 the total atomic density andu/
√

2 the root-mean-square atomic velocity.
The resulting spectra for the absorption and dispersion coefficients of the probe field

are shown in figure 5. The calculation was performed for a pump beam intensity of 0.6Is,
with Is the saturation intensity of the transition 4→ 5′, and a probe beam intensity of
0.02Is. These values conform with the experimental conditions. For the atomic density,
the valueN = 5× 1010 cm−3, of equilibrium at room temperature, was assumed. The
narrow features which appear in the spectra correspond to the Lamb dips and the crossover
resonances. Within these resonances, the absorption of the probe is considerably reduced
and the refractive index changes rapidly. The corresponding spectra for the pump field,
not shown here, do not present any sub-Doppler structure. The calculated coefficients were
used to characterize the global dependence of the external-cavity round-trip losses and the
phase change on the laser frequency, within the D2 line.
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Figure 5. Calculated coefficients of (a) absorption and
(b) dispersion of the D2 F = 4 → F ′ = 3, 4 and 5
transitions of Cs atoms for the probe field in a saturation
spectroscopy configuration. Lamb dips and crossover
resonances (CO) are labelled by the corresponding upper
hyperfine states.

3.2. Rate equations for a diode laser with frequency-dependent optical feedback

The behaviour of a diode laser with external optical feedback is described by the Lang–
Kobayashi rate equations [9], for the slowly varying complex field envelopeE(t) and the
number of charge carriers in the active layerN(t),

∂E(t)

∂t
= 1

2
(1+ iα)0GN [N(t)−Nth]E(t)+ κ

τin
eiω0τE(t − τ) (8a)

∂N(t)

∂t
= J − N(t)

τe
−
{
00

0
+GN [N(t)−Nth]

}
|E(t)|2. (8b)

Here, the complex electric field amplitude is written asE(t) = E(t) exp(−iω0t), with ω0

the angular oscillation frequency of the solitary laser and normalized so that|E(t)|2 is an
adimensional quantity indicating the number of photons in the internal cavity of the diode
laser. The optical gain per time unit is given by0GN(N − Nth), where0 is the optical
confinement factor andGN(N −Nth) is the linearized gain of the carrier number, withGN

the differential gain andNth the threshold carrier number of the solitary laser. The feedback
is accounted for through the external-cavity round-trip timeτ and the feedback parameter
κ, defined as the square root of the power reflectivity of the external cavity, including the
reflection at the output facet of the diode laser, relative to the reflectivity of such a facet. The
other parameters in equations (8) have their usual meaning:α is the linewidth enhancement
factor, τin is the internal-cavity round-trip time,00 represents the optical losses per time
unit in the internal cavity,τe is the carrier lifetime andJ is the carrier bias rate. The Lang–
Kobayashi equations allow for only one external round trip, which is a good approximation
in the case of weak to moderate feedback, as well as for arbitrary feedback levels with
antireflection-coated lasers. We account for the absorptive and dispersive properties of the
atomic vapour in the external cavity by including a frequency dependence in the definitions
of the feedback parameters.

Equation (8a) describes the electric field within the internal cavity of the diode laser,
at a reference plane placed just at the output facet, taken as the origin for the longitudinal
spatial coordinate. Let us assume that a stationary fieldEi = Ei exp(−iωt) is incoming
to the output facet from inside the diode cavity. If only one external-cavity round trip is
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considered, the total reflected fieldEr = Er exp(−iωt) at this facet is

Er =
{
r + (1− r2

)
rexte

−(α+(ω)+α−(ω))Labse−i[(β+(ω)+β−(ω))Labs−2ωLcav/c]
}
Ei (9)

wherer and rext are the amplitude reflectivities of the output facet of the diode laser and
the external reflector, respectively,Labs is the length of the cell containing the vapour, and
Lcav is the length of the external cavity. As introduced in the preceding section,α± andβ±

are the absorption and dispersion coefficients for the laser beams propagating forward and
backward through the atomic sample. In equation (9), we have assumed that the amplitude of
the field propagating in the positive direction, which acts as a saturating pump field, and the
amplitude of the retroreflected field, acting as a probe, change linearly with the penetration
depth within the atomic vapour. This assumption is well justified for the probe field, the
intensity of which is much smaller than the saturation intensities of the atomic transitions,
while it holds only approximately for the saturating field. We notice that, however, as the
atomic lines are Doppler broadened, saturation effects are weakened due to the fact that
contributions from detuned atoms are included in the average interaction [18].

The effective amplitude reflectivity of the external cavity [9] is defined as the ratio
reff = Er/Ei and is related to the feedback parametersκ andτ as

reff = r
(
1+ κeiωτ

)
. (10)

From the comparison between equations (9) and (10), we obtain the following definitions:

κ(ω) =
(
1− r2

)
rext

r
e−(α

+(ω)+α−(ω))Labs (11a)

τ(ω) = 1

c

{
(n+(ω)+ n−(ω))Labs+ 2(Lcav− Labs)

}
(11b)

where the refractive indices relative to the pump and probe fields are introduced, as

n±(ω) = 1− c

ω
β±(ω). (12)

With the use of the feedback parameters expressed by equations (11), the Lang–Kobayashi
equations, in (8), contain an explicit dependence on the laser frequencyω, so that they hold
only for monochromatic laser fields. Therefore, they can be used to find the stationary laser
modes, even if they are no longer valid for the description of the global laser dynamics.

3.3. Laser modes in the presence of an intracavity atomic absorber

The steady-state solutions of equations (8) are of the formE(t) = Es exp[−i(ωs − ω0)t ]
andN(t) = Ns. By substitution, we obtain the following conditions:

f (ωs) = 0 (13)

with

f (ω) = ω − ω0+ κ(ω)
τin

√
1+ α2 sin[ωτ(ω)− arctanα] (14)

and

Ns−Nth = − 2

0GN

κ(ωs)

τin
cos[ωsτ(ωs)] (15a)

E2
s =

J −Ns/τe

00/0 +GN(Ns−Nth)
. (15b)

Equation (13) represents the phase condition imposed by the external cavity containing the
atomic absorber and its solutions define the set of possible laser frequencies, for given
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feedback parameters. We consider the length of the external cavity, which modifies the
round-trip time τ , and the oscillation frequencyω0 of the solitary laser as externally
controlled parameters. In fact, both parameters are accessible experimentally, by changing
the longitudinal position of the external reflector through the piezoelectric transducer,
and varying the bias current or case temperature of the diode laser, respectively. In
equation (15a), Ns represents the threshold carrier number associated with the oscillation
frequencyωs. The differenceNs − Nth is proportional to the threshold gain. From
equation (15b), we see that the carrier bias rateJ required to obtain a given laser powerPs

is reduced, asNs diminishes with respect toNth.
A steady-state solution of the Lang–Kobayashi equations, satisfying the external-

cavity phase condition, represents a laser mode only if it is locally stable under small
phase changes [10]. By substituting, in equations (8), the electric field expressed as
E(t) = Es exp{−i[(ωs−ω0)t+φ(t)]}, whereωs andEs satisfy equations (13) and (15), and
developing the equations to the first order in the phase perturbationφ and its time derivative
φ̇, which represents the istantaneous frequency change, we obtain

df (ω)

dω

∣∣∣∣
ωs

φ̇(t) = g(ωs)[φ(t)− φ(t − τ(ωs))] (16)

where the functiong(ω) is introduced as

g(ω) = −κ(ω)τ(ω)
τin

√
1+ α2 cos[ωτ(ω)− arctanα]. (17)

Looking for solutions of the formφ(t) = φ0 exp(st), equation (16) gives

df (ω)

dω

∣∣∣∣
ωs

sτ (ωs) = g(ωs)
[
1− e−sτ (ωs)

]
. (18)

This equation has a solution fors real and less than zero if either

df (ω)

dω

∣∣∣∣
ωs

> g(ωs) > 0 (19)

or

df (ω)

dω

∣∣∣∣
ωs

< g(ωs) < 0. (20)

Conditions (19) and (20) represent the requirements for a stationary solution of the Lang–
Kobayashi equations to be a possible oscillating mode. In the limit of feedback parameters
independent ofω, these requirements are reduced to the usual stability condition [8] for the
empty-cavity modes. A complete linear stability analysis, involving variations of all laser
variables, i.e. the amplitude and phase of the electric field, and carrier number, has to be
performed in order to investigate the dynamic stability of each mode.

In figures 6(a) and 7(a), equation (13) is solved graphically for different values of the
control parameters. Figures 6(b) and 7(b) show the corresponding threshold carrier number
variationNs − Nth, as a function of the frequency. On each curve, the points satisfying
conditions (19) and (20) are marked. The figures correspond to different lengths of the
external cavity,L̄cav + 1Lcav, with L̄cav = 46 cm and1Lcav = 0.1λ in figure 6 and
1Lcav = 0.06λ in figure 7, with a laser wavelength ofλ = 2πc/ω0. The functionf (ω),
along with the threshold carrier number, presents narrow structures, corresponding to the
atomic Lamb dips or crossover resonances, superimposed on a slower frequency dependence,
characterized by oscillations at a frequency given by the free spectral range of the external
cavity modified by the dispersion of the atomic vapour. The frequency interval covered by
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solitary-laser threshold number (equation (15a)), in (b).
The marker around−125 MHz indicates the steady-
state solution which satisfies the stability conditions
(19) and (20). For the parameters, the following values
have been assumed:GN = 2.0 × 104 s−1, Nth =
1.4× 108, 0 = 0.2, α = 5.0, τin = 8.0× 10−12 s, 00 =
3.6× 1011 s−1, τe = 1.1× 10−9 s, J = 1.2Nth/τe, r =
0.56, rext = 0.5, Labs = 4.0 cm, ω0 = 2.2× 1015 s−1

and Lcav = L̄cav + 1Lcav, with L̄cav = 46 cm and
1Lcav= 0.1λ.

Figure 7. The same as in figure 6, except for
the value of the control parameter1Lcav = 0.06λ.
Several frequencies corresponding to different atomic
resonances satisfy the phase condition (13) and the
stability conditions (19) and (20). In (a), stable
solutions located on points with positive (negative)
slope, are marked by a slash/ (backslash\). The cross
× indicates a pair of closely spaced stable solutions,
one on the rising side and the other on the descending
side of the curve. Lamb dips and crossover resonances
(CO) are labelled by the corresponding upper hyperfine
states.

the horizontal axis is limited to a part of the Doppler-broadened spectrum, containing few
Lamb dips or crossover resonances. Out of the atomic absorption spectrum, the feedback
parameters are independent of the frequency, so that the stable solutions are those found for
an empty external cavity, i.e. with a frequency separation equal to the cavity free spectral
range. In figure 6, where the laser frequency is within the atomic absorption profile, one of
the possible modes has its frequency clamped to the 4′, 5′ crossover resonance while other
allowed modes lie outside the atomic spectrum. Figure 7 is obtained by changing, with
respect to figure 6, the length of the external cavity by a fraction of the laser wavelength.
In this figure, for fixed control parameters, several modes with oscillation frequencies locked
to different atomic resonances are present simultaneously. From the left-hand side the laser
modes correspond to the 4→ 3′ Lamb dip, the 3′, 4′ cross-over resonance, the 4→ 4′

Lamb dip and the 4′, 5′ cross-over resonance. By comparing figures 6(a) and 7(a) with the
corresponding figures in (b), we can observe that the marked solutions which satisfy the
stability conditions, are associated with a negative carrier number variation, i.e. a reduction
of the lasing threshold and an increase of the optical gain with respect to the solitary laser.
The situations illustrated in figures 6 and 7 are consistent with the observed optical spectra,
shown in figures 3(a) and (b), respectively.
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4. Summary and conclusions

The spectral behaviour of a diode laser subject to feedback from an external cavity
containing a cell of Cs vapour in a saturation spectroscopy configuration was investigated
experimentally and theoretically. We have focused our attention on the observed feature of
multi-mode emission with oscillation frequencies clamped to different sub-Doppler atomic
resonances within the D2 line of the Cs absorber.

A rate equation model was developed, starting from the Lang–Kobayashi equations and
including the effects of the absorptive and dispersive medium contained within the external
cavity. The occurrence of multi-stability with frequency locking to different sub-Doppler
atomic resonances, as observed experimentally, is accounted for by the model equations.

Despite the large amount of attention devoted to the issue of the absolute frequency
stabilization of a diode laser through the inclusion of an atomic absorber within the feedback
cavity, the question of the multi-mode emission induced by the absorber has never been
addressed previously. The multi-stability discussed in this work suggests that the extended-
cavity diode laser with an intracavity atomic absorber is also an interesting system from
the point of view of the fundamental research on nonlinear dynamics and chaos. Recent
achievements concerning the nonlinear behaviour of diode lasers with external feedback
[12] point out that the simultaneous presence of several external-cavity modes gives rise
to a peculiar chaotic regime. As the presence of the absorber substantially modifies the
mode structure in the phase space of the extended-cavity laser system and also modifies the
dynamic stability of the laser modes, novel features in the nonlinear dynamics involving
the absorber-induced multi-mode operation should be expected.
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