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Pattern formation resulting from transverse mode competition has been observed in CO2 lasers with a large
transverse section and a stable near-degenerate optical cavity. The pattern properties ruled by transverse hole
burning are analyzed experimentally as a function of the Fresnel number, the frequency intermode spacing, and
the symmetry breaking induced by the astigmatic cavity. It is shown that mode competition imposes selection
rules amid modes belonging to the largest transverse mode family allowed to oscillate.@S1050-2947~96!05405-
4#

PACS number~s!: 42.60.Jf, 42.65.Sf, 42.55.Lt

Transverse patterns in lasers have been observed since the
earliest days of laser physics, as, e.g., in 1964 when they
were reported for the first time on the transverse structures of
a HeNe laser@1#, but transverse dynamics studies developed
only in the past decade. Two approaches have been followed,
depending essentially on the number of transverse degrees of
freedom of the system, i.e., on the Fresnel number. At low
Fresnel number, it has been shown that modal expansion of
the field on a suitable basis of empty cavity modes is well
adapted to explain the main properties of the various station-
ary and dynamical regimes@2,3#. At high Fresnel number,
Coulletet al.demonstrated theoretically the existence of op-
tical turbulence induced by defects, also called optical vorti-
ces, and suggested describing complex spatiotemporal dy-
namics as a function of such vortices@4#. Unfortunately,
although phase singularities similar to optical vortices are
common in the transverse patterns of lasers, and may form
complex disordered patterns@3,5–8#, optical turbulence in
lasers has not yet been experimentally evidenced. Complex
patterns have also been observed in a liquid-crystal device
with optical feedback@9#, and turbulence has been evidenced
in optical oscillators with photorefractive gain@10#.

In CO2 lasers, the limiting factor of the experimental
analysis is the detection, as there is no technical solution to
record patterns at a cadence of 1 MHz or higher, which is the
typical scale of the dynamics. Therefore, the observations on
laser transverse patterns are limited to the time averaged in-
tensity@8#. The preliminary results of@8# showed that among
a wide variety of patterns, the transverse profile of the
CO2 laser could exhibit self-organization, even at Fresnel
numbers as large as 40. We show in this paper that in this
situation, it is still possible to describe experimentally the
patterns as a function of the modes of the empty cavity. Such
an analysis allows us to evidence that patterns are combina-
tions of a few modes among those present in the gain profile.
The selection mechanism is shown to be transverse spatial
hole burning, in good agreement with recent theoretical stud-
ies@11#. These results provide an alternative interpretation of
laser patterns to that given by Fenget al. in terms of standing
waves@12#.

The experimental setup is essentially the one described in
@8#. The detection consists in phosphorescent plates and a
video camera. Unfortunately, as this system has a low reso-

lution and is nonlinear, it provides pattern intensity distribu-
tions with a typical uncertainty of 20%. Another important
point is the presence in the cavity of Brewster windows in-
troducing astigmatism. This induces that~i! the cylindrical
symmetry of the cavity is broken to a rectangular symmetry,
so that the Hermite-Gauss basis TEMm,n becomes relevant,
and~ii ! the frequency degeneracy of modes having the same
q5m1n index is lifted. Pertinent parameters to characterize
the cavity are the generalized Fresnel numberN F and the
ratio Rn of the free spectral range to the transverse mode
spacing. The former is a measure of the transverse degrees of
freedom and the latter rules the interactions between the
transverse modes. In@8#, it was shown that forRn'15 and
values ofN F up to 30, the laser exhibits ordered time aver-
aged intensity patterns@Figs. 1~a!–~c!# with the following
properties:~i! patterns may be described as lattices of dark
~or bright! spots distributed on concentric rings. For sake of
simplicity, dark ~bright! spots will be referred to as holes
~spots! in the following. ~ii ! Along the two main axesx and
y, the patterns exhibit either a row of bright spots or a row of
holes. Thus, a pattern may be denoted by the symbolxyn ,
where x and y can take the valueh ~holes! or s ~spots!
depending on what is found on the respective axis, andn is
the number of spot rings. For example, the patterns shown in

FIG. 1. Comparison of experimental~a!–~c! and reconstructed
~d!–~f! patternshh4 , ss4 , andhs4 in the CO2 laser. Patterns~d!–
~f! follow the rules given in Table II.
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Figs. 1~a!–~c! are denotedhh4 , ss4 , andhs4 , respectively.
~iii ! Each ring contains 2(2l1 i11) equidistant holes, where
l is the ring index andi50 ~1! for hs andsh (hh andss)
patterns. These patterns obey the following scaling laws:~i!
the numbern of rings is proportional toN F , ~ii ! the number
of holes ~or spots! evolves asN F

2 , and ~iii ! the distance
between successive rings is proportional toN F

21/2.
These scaling laws are also displayed by eigenmodes of

the empty cavity@13#. This is a good indication that the
experimental patterns can be expanded on such a basis, prob-
ably as a function of a few modes. Unfortunately, in the
present experiment, there is no straightforward projection
method. Indeed, our experimental setup does not provide a
stable enough local oscillator to analyze the output field am-
plitude of the laser. Moreover, as the two-dimensional~2D!
detectors have a nonlinear response, methods such as least
square applied on the intensity pattern need careful interpre-
tation.

However, as mentioned above, the presence of astigma-
tism in the cavity allows us to limit our investigations to the
Hermite-Gauss basis. If we use the extra hypothesis that,
because of the frequency degeneracy lift, all modes have a
different frequency, it becomes possible to use a least square
method to build up time averaged patterns adding intensities
of modes. Indeed, ifj modes coexist, the total time averaged
intensity ^I & will be

^I &5K U(
k51

j
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wheref k(t) is the complex modal amplitude of thekth mode
with spatial distributionAk(x,y) and I k5uAku2. If v iÞv j
for jÞ i , the second term in Eq.~1b! vanishes and the total
average intensity pattern is just the sum of the intensity of
each mode. In this situation, the concept of a relevant basis is
fundamental. Indeed, if all modes have different frequencies
in a basis, this is not necessarily the case in another one.
Thus, the hypothesis that the Hermite-Gauss basis is the rel-
evant one, is essential. This conjecture is confirmed by the
results of the least square analyses, as the residues are always
larger when another basis, as, e.g., Laguerre-Gauss, is used.

Starting from these hypotheses, expansion coefficients for
each mode in the pattern have been determined by a least
square method. A typical result is shown in Table I, where
only the strongest modes are reported. These results must be
taken with great care because of detector nonlinearity. How-
ever, it appears clearly in Table I that 75% of the energy is
concentrated in six modes whose coefficients are larger than
half the largest one. These modes belong to the same family,
with q'N F . This last property has already been observed
experimentally in a high power CO2 laser@14# and was also
encountered in a theoretical treatment of the laser just above
threshold@11#. Taking into account the imperfections of the
detection, we finally found that patterns of the typexyn can
be reconstructed with a good approximation using few
modes obeying the following rules:~i! all modes belong to

the same family, withq'N F ; ~ii ! in this family, only
modes following the rules of Table II are present;~iii ! all
modes have equal weight. Some examples of reconstructed
patterns are given in Figs. 1~d! and 1~e! and show excellent
agreement with the experimental observations of Figs. 1~a!–
1~c!.

To interpret this behavior, let us consider the ‘‘free en-
ergy’’ J of the laser defined as the difference between the
total energy of modes and the ‘‘mode overlapping energy’’:

J5(
i51
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~2!

wherej is the number of modes andI i the intensity of the
i th mode. With an adequate normalization of the free energy,
the first member in Eq.~2! reduces toj and Eq.~2! becomes

J5j2(
i

(
jÞ i

Ci j

ACiiCj j

. ~3!

We have calculatedJ for all possible combinations of
modes withq,10. It appears that the combinations obeying
the selection rules of Table II correspond to maxima ofJ.
Figure 2 shows as an example the values taken byJ for all
the combinations of modes of theq54 family. The selection
rules given in Table II indicate that two patterns may exist in
this family, corresponding tom,n both even or odd, i.e.,
hh2 andss2 . The two maxima in Fig. 2 correspond to these

TABLE I. Coefficientsa of the modal expansion applied on the
Hermite-Gauss modes TEMm,n , obtained by least square fit of the
pattern shown in Fig. 1~a!. a is normalized to the weight of the
strongest mode and only modes witha.0.05 are reported.s is the
standard deviation.

m,n a s

7,1 1.00 0.28
0,8 0.93 0.15
1,7 0.82 0.28
5,3 0.69 0.38
3,5 0.57 0.38
8,0 0.55 0.15
6,2 0.40 0.34
2,6 0.34 0.34
0,0 0.09 0.07
0,1 0.07 0.12
4,4 0.06 0.39
1,4 0.06 0.38

TABLE II. TEM m,n modes needed to reconstruct thexyn pat-
terns.

Type m n Additional modes

hh odd odd TEM0,q1TEMq,0

ss even even
hs even odd TEMq,0
sh odd even TEM0,q
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two particular patterns. So it is clear that transverse modes
associate in the laser to maximize energy and simultaneously
minimize overlapping between their intensity distribution.
This ‘‘transverse hole burning’’ has to be compared with its
counterpart for longitudinal modes, where the arrangement
of modes occurs also through a coupling of the intensities of
each mode. The origin of this coupling can be found quali-
tatively in a simple model of ring classB laser at resonance.
In such a laser, the model proposed by Lugiatoet al. @15#
using a modal expansion of the field gives

dD~x,y,t!

dt
52gFD~x,y,t!21

1U(
i
f i~t!Ai~x,y!U2D~x,y,t!G , ~4a!
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~4c!

u i j ,iÞ j5k2CE E dxdyAj~x,y!Ai* ~x,y!D~x,y,t!,

~4d!

whereD(x,y,t) is the population inversion.k andg are the
relaxation rates of the field and of the population inversion,
respectively. Relaxation rates and time are in units of the
relaxation rate of the polarization. 2C is the pump parameter
andai5(n i2nR)k

21 gives the losses of the modei of fre-
quencyn i . nR is an arbitrary reference frequency. Note that
u i i represents the well known ‘‘gain minus losses’’ term of
the mode i while u i j is a cross saturation term between
modesi and j .

To put in evidence that in such a system, overlapping
occurs through the mode intensities, let us consider the sta-
tionary state of Eq.~4!, just above threshold. In this situation,
Eq. ~4c! gives for modei @15#:

(
k

u f ku2E E dxdyIi I k512
1

2C
. ~5!

Note that at this point of the calculation, it already appears
that the coupling between modes occurs through their inten-
sity. Equation~5! is a system ofj equations withj variables
f k
25Xk :

(
k
CikXk512

1

2C
. ~6!

Direct calculation of theCik coefficients for mode families
up toq58 shows that their sum overk is quasiconstant. As
the right-hand side of Eqs.~6! is the same for all equations,
it results that the unknown quantitiesXk are almost equal:
Xk5 f k

2' f 2. Adding thej equations~6!, we obtain:

f 25jS 12
1

2CD S (
i

(
k
CikD 21

. ~7!

The maximum for the total energy of the pattern is obtained
if j f 2 is maximum. Starting from Eq.~7! and separating in
the denominator the termsCii andCik,kÞ i , we obtain at the
first order inCik :

FIG. 3. ~a! Experimental imperfect circular
lattice observed for parameters slightly different
from those of thehs6 pattern.~b! Numerically
reconstructed pattern using thehs6 rules modified
as indicated in text.

FIG. 2. Values ofJ for the different combinations of modes in
theq54 family. The combinations are indicated on thex axis with
them value of each TEMm,n mode.n may be deduced from the
relationn1m5q54. For example, the first column withm50 and
m51 corresponds to the superposition of modes TEM0,4 and
TEM1,3. The two emphasized values~black columns!, which are
the highest values taken byJ, correspond to the patternshh2 and
ss2 .
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1
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This equation is an unnormalized version of Eq.~3!. Al-
though it has been established in a situation far from the
experimental conditions, it shows that the coupling between
modes occurs through their intensity rather than their field
amplitude, and that they arrange together following a prin-
ciple of transverse hole burning, minimizing the overlap be-
tween modes, in spite of the fact that experimental patterns
are not stationary. Indeed, such a principle is rather intuitive
in a stationary pattern but is surprising in a pattern where
modes could be not present at the same time, and so could
minimize their energy overlapping through, e.g., a winner-
takes-all dynamics.

Let us recall that regularxyn patterns as those of Fig. 1
are not the only ones observed, but coexist with a wide va-
riety of disordered ones. Usually, starting from an ordered
pattern and changing a control parameter such as the cavity
length, the transition from anxyn distribution to a disordered
one occurs through changes in the intensity distribution,
whose first steps give rise to patterns with lattice defects@8#.

These patterns remain symmetrical with respect to thex and
y axes but do not form regular arrays~Fig. 3!. With a method
similar to the previous one, we observed that these patterns
can be derived fromxyn ones by suppressing or substituting
some modes of the sameq family. For example, the pattern
shown in Fig. 3~a! results from the substitution of modes
TEM13,0, TEM6,7, TEM4,9, and TEM2,11 by modes
TEM3,10 and TEM1,12 in patternhs6 , as shown in Fig. 3~b!.

A global scenario of the morphogenesis in the CO2 laser
may be proposed on the basis of the results presented here.
For a given Fresnel number, possible patterns are thexyn
ones. We have shown that these patterns may be described as
a function of the modes of the empty cavity, through a dras-
tic selection due to transverse hole burning. But these pat-
terns form islands of order in the parameter space. Starting
from these points, order disappears progressively through
mode substitutions. For parameters far from those ofxyn
patterns, modes arrange in a way probably different from that
described in this paper. The composition of these highly dis-
ordered patterns will be investigated in the near future, to-
gether with the temporal dynamics of all patterns, which
could give important informations on the temporal arrange-
ment of modes.
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