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Spatial instabilities in a cloud of cold atoms
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Cold atomic clouds have been shown to have some similarities with plasmas. Previous studies showed that
such clouds exhibit instabilities induced by long-range interactions. However, they did not describe the spatial
properties of the dynamics. In this paper, we study experimentally the spatial nature of stochastic instabilities,
and we find out that the dynamics is localized. Data are analyzed both in the spectral domain and in the spatial
domain (principal component analysis). Both methods fail to describe the dynamics in terms of eigenmodes,
showing that space and time are not separable.
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During the past few decades, cold atoms have proven to
be more than an extraordinary tool for studying the physics
of dilute matter. Many spectacular results concern the field
of condensed matter, such as, e.g., the direct observation of
Anderson localization [1], or that of the BEC-BCS crossover
[2]. However, in the field of dilute matter, important ques-
tions remain unresolved. In particular, magneto-optical traps
(MOTs) exhibit instabilities, observed for several decades,
usually seen as a source of nonrepeatability for further use of
cold atomic samples. These instabilities have been studied for
15 years on their own, but the detailed mechanisms responsible
for their appearance have not been clearly identified yet [3–11].
In that context, cold atoms are often compared to plasmas, and
they are even thought to be a good model system for plasmas, in
particular because experiments are considered to be relatively
simple and well-controlled [7].

Indeed, although cold atoms in a MOT are neutral, it has
been demonstrated that a Coulombian-like repulsive force
appears in the multiple scattering regime. In an optically thick
cloud, a photon can undergo several scattering events before
escaping the cloud. A single emission and absorption event
induces the same momentum kick for the two atoms, but in
the opposite direction, resulting in an exclusively repulsive
interaction. This process creates a Coulombian-like force as
the flux of photons varies like the inverse of the squared
distance from the emitter [12]. This long-range interaction
plays a crucial role in the behavior of a cold atom cloud, as it
also prevents high atomic densities and thus any other type of
atomic interactions. Because of these long-range interactions,
fluid-dynamical models used to describe cold atoms physics
have been adapted from plasma physics [8,10,11]. On the other
hand, it has been demonstrated that the dynamics of cold atoms
in a MOT can be described through the Vlasov-Fokker-Planck
equation [9], such as, e.g., the plasma dynamics in the inertial
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confinement fusion [13], the stellar dynamics [14], or the
electron dynamics in storage rings [15].

Most of these systems are known to exhibit instabilities
under appropriate parameter sets. Numerous types of insta-
bilities have been observed, with very different properties
and signatures [13–17]. Although plasmas are governed by
long-range interactions, instabilities appear not only at large
spatial scales but also at smaller scales. Some examples of local
instabilities are the microbunching instability in the storage
rings [15], drift wave microinstabilities in plasmas confined
by a magnetic field [16], or microinstabilities of the solar
corona [17].

Mainly two types of instabilities have been reported through
cold atoms experiments. Self-sustained instabilities are peri-
odic oscillations [4,7], while stochastic instabilities exhibit
random characteristics [3]. In all cases, the experimental
characterization was done through the temporal evolution
of global variables, such as the fluorescence of the cloud
or the location of its center of mass. The spatial properties
of the instabilities, in particular their location in the cloud,
are not known. However, most simplified models allowing
these instabilities to be reproduced have considered them
to be global [5,6]. On the other hand, taking formally into
account the different processes involved in the MOTs leads to
the Vlasov-Fokker-Planck equation, implicitly predicting local
instabilities [9]. Models derived from plasmas also predict
local phenomena, such as photon bubbles [10], but none of
them has been observed yet. Thus gaining knowledge on the
spatiotemporal characteristics of the cloud dynamics appears
to be crucial to know which methods and approximations
can be used to solve the full set of equations describing the
MOT. It could also help to clarify the similarities between
cold atom instabilities, hydrodynamics turbulence, and plasma
instabilities.

We report in this paper the experimental observation of
local instabilities through a detection setup that allowed us
to record the spatiotemporal evolution of the atoms in the
MOT. We focus here on the previously observed stochastic
instabilities [3,5], and we show that these instabilities are
localized in a limited area of the cloud. The analysis of the
dynamics by two different methods does not give results
consistent with the hypothesis of global temporal or spatial
motion. The paper is organized as follows: after a brief
description of the experimental setup, we analyze the dynamics
of the MOT through global tools, as used in the literature,
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in order to clearly establish the type of instabilities we
are studying. Then we analyze the dynamics through two
methods: local temporal analysis gives information on the
motion eigenfrequencies, while principal component analysis
(PCA) allows us to identify spatial eigenmodes.

Our experimental setup is described in detail in [3–6].
We use a standard Cs MOT with three retroreflected beams.
However, special care is taken with regard to the stability
of parameters that could introduce artefacts in the dynamics.
For example, we use a single-mode optical fiber to clean the
transverse profile of laser beams. We also modulate the relative
phases of all the beams to avoid possible interference patterns.
The modulation frequency (>1 kHz) is chosen larger than the
collective atomic response frequencies so that the intensity is
averaged [18]. These two features prevent any local variation
of the laser intensity. The MOT produces a cloud of cold atoms
with a typical diameter of 4 mm and a typical density of 109

atoms/cm3. These values are characteristic of the multiple
scattering regime in which the collective effects play a key
role in the behavior of the cloud [19]. To obtain the desired
dynamical regime, we adjust two control parameters: (i) the
intensity I of a single incoming beam, expressed in units of
the saturation intensity Isat = 1.1 mW cm−2 (D2 line of 133Cs),
and (ii) the detuning � between the laser frequency and the
atomic transition, expressed in units of the natural linewidth
� = 2π × 5.22 MHz. In the following, all the illustrations and
examples correspond to I = 11Isat and � = −1.8�. They are
typical of the dynamics observed for 10Isat � I � 15Isat and
−1.9� � � � −1.6� [5,6].

The spatiotemporal dynamics of the atoms is analyzed by
recording the local temporal evolution of the fluorescence
at any point of the cold atom cloud. Let us remember that
the number of atoms is proportional to the fluorescence for
a given set of MOT parameters. As during an acquisition
the MOT parameters are kept constant, we thus record the
spatiotemporal evolution of the atomic density in the cloud.

It has been shown that instabilities exhibit frequencies
ranging from 1 to 100 Hz [3–6]. Thus to record the dynamics, a
standard video camera at 30 frames per second is not adapted.
We use a fast video camera (Phantom v7.3 camera from Vision
Research) that can record up to 10 000 frames/s. A set of lenses
is used to cover an optical field of 15 × 10 mm and a depth
of field of 2.5 mm, well fitting the cloud size. An important
point is to determine if the light recorded by such a camera
comes only from the surface of the cloud, or from any point
inside the cloud. Instabilities arise when the atomic density
is high enough, i.e., when the collective nonlinear processes
inside the cloud cannot be neglected [3–6]. However, even for
such relatively dense clouds, the number of scattering events
for most photons escaping the cloud is one or two [18]. That
means that the camera captures photons coming from any point
inside the cloud, but with a different weight depending on the
location. This last point has to be kept in mind, although it has
marginal consequences on the interpretation of the pictures.
Indeed, the main difficulty is that we record a two-dimensional
(2D) projection of the cloud, while the dynamics occurs in
three dimensions. This makes the interpretation of the records
harder.

The location of the camera is dictated by the preferential
direction of the dynamics. Let us call Ox, Oy, and Oz the

three perpendicular axes corresponding to the three incident
beams of the trap, Oz being also the axis of the coils. Thanks to
the choice of a retroreflecting beam configuration, and because
of the shadow effect [3–6], the amplitude of the dynamics is
enhanced in a direction along the line x = y = 2z. Looking
at the dynamics along this direction would lead to artifacts
masking some parts of the dynamics. The camera axis, also
imposed by the available space on the setup, is chosen close
to the (x = y,z = 0) direction. In that way, the preferential
direction of the dynamics projects with an angle of 20◦ on
the picture plane, leading to a satisfactory resolution of the
observations.

To make the link between the present work and the previous
reported observations, we also use a 4-quadrant photodiode
(4QP) to monitor the total cloud fluorescence and the position
of the cloud center of mass, as, e.g., in [4]. The signals from
the 4QP and the pictures from the video camera are recorded
synchronously.

As pointed out above, we focus here on the regime of
stochastic instabilities. This regime has been studied in detail
in several papers, both experimentally and theoretically [3,5].
Experimental data consisted of time sequences of the total
number N of atoms in the cloud and of the location r of
its center of mass. Note that the spatial distribution of the
atoms in the cloud was not accessible. The dynamics has
been shown to consist essentially of erratic fluctuations of
N and r . It was demonstrated that these fluctuations were
not deterministic chaos. However, this noisy dynamics is cut
off with bursts of periodic oscillations at a frequency that
does not appear outside the bursts. This behavior resembles
fluid intermittency, but this hypothesis does not stand up to
examination. Indeed, the amplitude of the oscillations depends
on the MOT parameters: in particular, it exhibits a maximum
as a function of �. This system has been modeled with rate
equations of N and r , which allow the main characteristics of
the observations to be reproduced. The whole dynamics has
been shown to be induced by a stochastic resonance, which
fixes in particular the parameters where the instabilities are
stronger.

In the present work, the unstable regime shows the same
characteristics as in [3]. In particular, for the parameters given
above, instabilities are maximal for � = −1.8�; the dynamics
(the number of atoms and the center of mass) is a succession
of regular bursts and noisy intervals (Fig. 1); in the bursts, a
frequency ω1 � 2π × 21 Hz dominates the dynamics. To be
more exhaustive than the previous studies, we also study the
characteristics of the secondary frequency components. In the
burst regime, the second component ω2 � 2π × 72 Hz is two
orders of magnitude smaller than ω1. The components 2ω1 and
ω2 − ω1 are also present, with amplitudes similar to that of ω2.
In the noisy intervals, ω2 is present, with the same amplitude as
in the bursts. ω1 is also present, but with an amplitude smaller
than ω2. In summary, ω1 appears mainly inside the bursts,
while ω2 is always present. The values of ω1,ω2 and their
harmonics are in agreement with those observed in previous
studies, and they are also close to the plasmalike frequency
introduced in [7]. Moreover, these values appear as a robust
characteristic of the instabilities. On the whole interval of the
MOT parameters—detuning and laser intensity—where the
instabilities appear, they can be considered to be constant as
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FIG. 1. Dynamics of the total number of atoms N , recorded
through the total fluorescence collected by the 4QP, for � = −1.8�

and I � 13Isat. This example shows a sequence starting with a
periodic burst followed by erratic fluctuations. The inset is a zoom of
the periodic burst.

they vary less than 4% while the amplitude of the dynamics
varies by several orders of magnitude.

For this study, our aim is to characterize the nature—space-
dependent or not—of the dynamics. Thus we do not need to
record long time series with a good time resolution, as would
be necessary for, e.g., making a topological analysis of the
dynamics attractors. We only need to follow the usual rules
of frequency analysis, i.e., to record at least two points per
period. The following results correspond to 512 × 512 pixel
pictures recorded with a rate of 400 frames/s. The length of the
analyzed sequences is 625 ms, i.e., 250 frames, corresponding
to the typical length of the bursts.

To determine the spatial dependence of the dynamics, a
straightforward approach consists in applying the frequency
analysis used previously to each point of the cloud. Figure 2
shows a typical result for the dynamics inside a burst. In
Figs. 2(a) and 2(b), the cloud of cold atoms is shown through
a contour plot of its averaged fluorescence. In Fig. 2(a), we
represent in gray levels the amplitude of the ω1 component
in each point of the cloud, obtained by fast Fourier transform
(FFT) of each pixel of the picture sequence. It appears certain
that the dynamics depends on the space. Instabilities appear in
two small areas of the cloud, covering about 10 % of the whole
cloud. The two areas have very different shapes and sizes, and
we see two local maxima in one of the areas. Figure 2(c) shows
that the two areas pulse with opposite phases. It is difficult to
deduce from such 2D observations the exact 3D dynamics, but
it is clear that the instabilities consist of a local pulsation or
rotation, while the rest of the cloud is stable.

The above example is typical of what we observed in all
the recorded sequences. The instabilities are always localized
in a limited area of the cloud, covering typically 10% of the
whole cloud. Nevertheless, some differences appear from one
sequence to another. The most noticeable changes in time are
the location of the local maxima and their number as well as
their shape, which appear to be nontrivial.

We performed the same analysis for the ω2 component, and
we found the same type of results as for the ω1 component: the
instabilities are localized in a relatively small area, and they
correspond to a motion of pulsation or rotation of a part of the
cloud. As discussed above, inside the bursts, the ω2 component

is small as compared to the ω1 component, making the data
analysis less reliable. However, it appears clear that in this
case, the characteristics of the ω2 component follow those of
the ω1 component, delimiting the same unstable area with the
same type of motion. Figures 2(b) and 2(d) show, respectively,
the amplitude and the phase of the ω2 component for the
same burst as in Figs. 2(a) and 2(c): the spatial distributions
of the instabilities are the same for the two components. The
similarity of the phase distributions is less convincing, due to
the weakness of the component, but in spite of that, a phase
opposition appears between the two areas. To generalize this
observation, we computed the spatial overlap between the two
components for all the recorded sequences, and we found that
they have in most cases a similar spatial distribution.

Outside the bursts, the ω2 component is still present and
has the same characteristics. But as its spatial distribution
cannot be compared to that of ω1, and because of the poor
signal-to-noise ratio of this regime, the results are less relevant
than in the regime inside the bursts.

Thus the dynamics appears to be a small (in space) and weak
(in amplitude) periodic motion of a small part of the cloud at
the ω2 frequency, cut off by bursts where the amplitude of the
motion increases temporarily, while its main frequency shifts
to ω1. However, this description is not completely satisfactory.
Indeed, it gives information about the temporal components
of the dynamics, but it does not give any information about
the spatial components. In particular, it seems to associate one
spatial component with two different frequencies, while in
spatiotemporal systems where the temporal dynamics and the
space distribution can be separated, such as, e.g., in multimode
lasers [20], a spatial eigenmode is associated with only one
eigenfrequency. In the following, we adopt another approach.

PCA has the advantage of providing a description of the
dynamics of the system without requiring any preliminary
hypothesis. The dynamics is described in terms of a super-
position of spatial modes, giving complementary information
with respect to the Fourier analysis. The analysis is performed
using the method described in [21].

The result of the PCA is a set of spatial modes forming
a basis whose size is equal to the number of pictures of the
sequence (250 in our case). If these modes are sorted according
to their weight, i.e., their contribution to the total statistical
deviation around the averaged atomic distribution, the method
leads to the determination of the number of modes useful
to describe the dynamics. In our case, we find that in the
sequences considered here, the main mode contains between
50% and 80% of the statistical fluctuations, and the second
mode between 5% and 25%. Thus the dynamics appears to
be dominated by one single mode, although the weight of
the second mode is not negligible. Depending on the desired
accuracy, the third mode, with a weight of 10% ± 5%, could
be taken into account. In the following, we consider only the
first two modes.

Figure 3 shows the first two modes obtained by the PCA of
the sequence of Fig. 2. Note the similarity of the main mode
with the ω1 spatial distribution [Fig. 2(a)]. However, this result
is not general. On the contrary, we observe a major difference
between the modes given by the PCA and those resulting
from the Fourier analysis. While in the latter a wide variety
of shapes are obtained, the results are more homogeneous in
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FIG. 2. Spatial distribution of instabilities for one sequence: (a) and (b) show the local amplitude of the two main components: ω1 and ω2.
The normalized magnitude squared of the spectral component is represented in gray level. The contour plot shows the averaged fluorescence
during the sequence. The contour interval is equal to 12.5% of the maximum (the point corresponding to the 100% contour line is not shown).
Parts (c) and (d) represent the corresponding phase distributions. Grayscale represents the relative phase of the local oscillation between ±π .
The contour plot identifies the unstable areas.

the former. In fact, one set of modes dominates the whole
dynamics. This basis—let us call it the main basis—is not the
only one found by the PCA, but it is the most frequent in the
set of recorded sequences. This regime is randomly interrupted
by short intervals where the dynamics is described by another
basis before it returns to the main basis. These alternative bases
differ from one sequence to another, and we did not find any
common properties. For example, in a few cases the modes of
the main basis appear, but in a different order: the first mode
of the main basis becomes the second mode of the basis.

A surprising result is that the regimes found with the PCA
do not correspond to those given by the Fourier analysis.
In particular, the sequences described by the main basis do
not follow the succession of bursts and noisy intervals. As a
consequence, the frequencies associated with the main basis
may change from one sequence to another. Moreover, the

time evolution of a given spatial mode may exhibit different
frequencies in different sequences. Figure 4 shows the time
evolution and the FFT of two modes dominating the dynamics
in two consecutive sequences. Although the two modes are
similar, they are associated with two very different time
evolutions: for the first one, both frequencies ω1 and ω2 drive
the dynamics, while the second one corresponds to a burst
where ω1 dominates the dynamics.

In summary, the PCA leads to a description of the dynamics
in terms of spatial modes. The results show that such a
description is as relevant as the description in terms of
frequency components. Two regimes are found: the first one
corresponds to a well-identified spatial mode basis, referred to
as the main basis, and the second one is described by different
bases. From this point of view, the description obtained by the
PCA is similar to that of the Fourier analysis. But surprisingly,
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FIG. 3. Two first spatial modes given by the PCA [(a) and (b), respectively] for the same sequence as in Fig. 2. In both cases, the spatial
distribution is represented in absolute value in gray level, and the upper and lower areas have to be understood, respectively, as an excess (in
blue) and a depletion of atoms (in red). This information is similar to that given by the phase of the Fourier analysis.

the two regimes of the PCA do not correspond in time
sequences to the two regimes of the Fourier analysis.

The two approaches—temporal and spatial—give comple-
mentary information on the dynamics: the dynamics of the
cloud of cold atoms in a MOT is a genuine spatiotemporal

system, where the spatial and temporal behaviors cannot be
separated. This result implies that an exclusively temporal
description as in [3–7] must be abandoned. However, we must
not forget that the temporal model in [5] was able to reproduce
qualitatively the observed dynamics. A naive interpretation
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FIG. 4. From top to bottom: first modes calculated by the PCA for two consecutive sequences and the FFT of the time evolution of these
modes.
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could be that only a spatial subset of the atoms undergoes
temporal instabilities as described in [5], while the rest of
the cloud is stationary. In addition to the above arguments, at
least two points show that this interpretation is not correct:
the spatial distribution of the unstable area is not always the
same for a given set of parameters, and most importantly, the
PCA shows that at least two spatial modes are required to
describe the dynamics. Thus the dynamics studied here has all
the characteristics of spatial stochastic resonance [22].

As discussed in the introduction, several models have
been proposed to describe the MOT dynamics. Until now,
none of these models has been able to show stochastic
resonance, but their numerical solutions have been explored
very incompletely. However, one of the generic systems
modeling stochastic resonance is governed by the Fokker-
Planck equation [22]. Therefore, the model developed in
[9], which leads to the Vlasov-Fokker-Planck equation, is
likely to generate such a mechanism. Moreover, in this model
built formally from the different processes involved in the
MOTs, the collective effects appear through spatial derivatives,
and thus they could produce local dynamics. Thus, although
numerical solutions for this model are not yet available, it is a
good candidate to describe the dynamics discussed here.

We report in the present paper experimental results on the
dynamics of an unstable cloud of cold atoms in a regime of
stochastic instabilities. Previous studies focused on the tem-
poral behavior of the instabilities. Here we study both the

spatial and temporal properties of the dynamics. Although the
atomic motion cannot be clearly identified, as our analysis
is based on a 2D projection of a 3D motion, we show
that the oscillations are localized in space. We analyze the
dynamics through two different methods, and both point
out the key role of space in the dynamics. Moreover, the
analyses in terms of frequency components and spatial modes
show that the relation between the temporal regime and the
spatial distribution is not straightforward, as the same spatial
distribution can correspond to different temporal regimes.
These results invalidate the description in terms of purely
temporal models, as in [3–7], and they require the use of fully
spatiotemporal models, such as the Vlasov-Fokker-Planck
model [9] or the plasma-derived model [10]. To go further,
in particular to know what the similarities are between cold
atoms and plasma dynamics, a deep physical interpretation of
the observed behavior is required. Therefore, the next step is
to run numerical simulations to obtain quantitative agreement
between models and experimental observations, particularly
in the dynamical regimes.

Note added. Recently, an experimental observation related
to our results was reported [23].
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“Fonds Européen de Développement Economique Régional.”
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