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Abstract. The cloud of cold atoms obtained from a magneto-optical trap is known to exhibit two types of
instabilities in the regime of high atomic densities: stochastic instabilities and deterministic instabilities.
In the present paper, the experimentally observed stochastic dynamics is described extensively. It is shown
that it exists a variety of dynamical behaviors, which differ by the frequency components appearing in the
dynamics. Indeed, some instabilities exhibit only low frequency components, while in other cases, a second
time scale, corresponding to a higher frequency, appears in the motion of the center of mass of the cloud.
A one-dimensional stochastic model taking into account the shadow effect is shown to be able to reproduce
the experimental behavior, linking the existence of instabilities to folded stationary solutions where noise
response is enhanced. The different types of regimes are explained by the existence of a relaxation frequency,
which in some conditions is excited by noise.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 05.40.Ca Noise – 05.45.-a Nonlinear dynamics and
nonlinear dynamical systems

1 Introduction

Magneto-optical traps (MOT) produce clouds of cooled
atoms at temperature as low as the µK. The achievement
of such clouds opened many perspectives, not only in the
field of fundamental atomic physics, as e.g. in the do-
main of the atomic dynamics or the quantum chaos [1],
but also leads to several potential applications, in partic-
ular the improvement by several orders of magnitude of
the atomic clock [2]. The MOT is also the first stage to
produce lower temperatures, in particular to obtain Bose-
Einstein condensates [3]. Although the use of MOTs is
relatively well mastered, some details of the experimental
set-up remain empirical, because of the existence in the
cloud of instabilities that are not well understood. Some
studies showed that when the trapping beams are mis-
aligned, the cloud may be spatially altered and become
unstable. In particular, ring-shaped clouds and chaos have
been observed, and attributed to a vertex force [4,5]. How-
ever, the main instabilities encountered in the experiments
concern well-aligned MOTs. In that case, the cloud, which
is usually more or less ellipsoidal, has a complex irregu-
lar shape, with an inhomogeneous atomic density (Fig. 1).
This shape may not be stable, and changes as a function
of time: a typical example of these instabilities is shown
in Figure 1.
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Fig. 1. Sequence of snapshots showing the time evolution
of the unstable atomic cloud. Snapshots are presented in the
chronological order, each one being separated by 120 ms.

There is a deep interest to identify the nature of these
instabilities, in the aim to control them, and possibly to
take advantage of them. To illustrate these points, let us
remember that instabilities may originate in many mech-
anisms, which can be classified in two families: stochastic
or deterministic. In the latter, called also deterministic
chaos, the dynamics is described by a set of deterministic
equations. When the number of equations is small (low-
dimensional deterministic chaos), it has been shown that
the dynamics can be controlled to reach various states
that are not accessible otherwise, as unstable stationary
states [6] or periodic behaviors [7]. It is also well-known
that the description of such a dynamics gives access to nu-
merous parameters, which are not measurable when the
behavior is stationary [8]. The cost for these informations
is that there is no other way to reduce the instabilities. On
the contrary, if the origin of the instabilities is stochastic,
i.e. due to external noise, a reduction of instabilities is ob-
tained by reducing the noise, but the instabilities have no
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physical meaning, in that sense that they are not intrinsic
to the physics of the system.

In [9], a first type of instabilities, arising for low beam
intensities, has been depicted. It was showed that these
so-called “stochastic instabilities” are induced by the ab-
sorption of the trapping beams in the cloud. A model tak-
ing into account this so-called shadow effect showed that
from a dynamical point of view, instabilities arise through
a stochastic resonancelike phenomenon, namely the coher-
ent resonance, linked to a Hopf bifurcation in the station-
ary solutions of the MOT. It is well-known that such a
bifurcation usually leads to periodic instabilities, and in-
deed, a recent study evidenced such instabilities, purely
deterministic [10]. However, a correct description of these
self-oscillations required to modify the model in [9], in par-
ticular to take into account the spatial distribution of the
cloud.

In the present paper, the results presented in [9] are
detailed, and extended to a larger range of parameters,
where new regimes appear, in particular a behavior with-
out resonance frequency, contrary to the instabilities de-
scribed in [9]. Then the modified model introduced in [10]
is accurately described, and the relative domains of ap-
pearance of stochastic and deterministic instabilities are
discussed. The difference appears to be the result of the
preeminent role of noise in some parameter range, in par-
ticular in the vicinity of the bifurcations. The stochastic
instabilities predicted by the model are studied, and they
are shown to be in agreement with those experimentally
observed. In particular, an interpretation of the two types
of stochastic instabilities, with and without resonance fre-
quency, is found.

The paper is organized as follows. After this introduc-
tion, Section 2 describes the experimental set-up. Then,
a detailed analysis of the experimental observations of
the stochastic instabilities is presented (Sect. 3), show-
ing in particular the existence of two types of instabilities.
Section 4 is devoted to the construction of a simple 1D
model, already presented in [10] in a less detailed way. In
Section 5, the stationary solutions of the model are dis-
cussed. Finally, in Section 6, the noise induced dynamics
instabilities is studied and compared to the experimental
observations.

2 Experimental set-up

We work with a cesium-atom MOT in the usual σ+ − σ−
configuration, with three arms of two counter-propagating
beams obtained from the same laser diode. The waist
wT of the trap beams may be varied from typically 3 to
10 mm. Two configurations are possible: in the first one,
all six beams are independent, by opposition to the sec-
ond configuration, where counter-propagating beams re-
sult from the reflection of the three forward beams. In
the last case, the intensity asymmetry resulting from the
absorption of the forward beam by the cloud, generates
a center-of-mass motion, while in the first case, instabili-
ties are characterized by symmetrical bursts on the cloud
shape, much more difficult to measure. However, as the

nonlinearities involved in both cases are the same, we ex-
pect that the dynamics will be fundamentally of the same
nature, and thus we choose the configuration with retro-
reflected beams.

A full description of the unstable dynamics of the
atomic cloud will be presented in the next section. How-
ever, to make easier the understanding of this paragraph,
let us depict them briefly. As shown in the introduction
(Fig. 1), instabilities consist in a deformation of the spatial
atomic distribution, leading to fluctuations of the shape
of the cloud. Therefore, the relevant dynamical variables
allowing us to describe instabilities, could be the shape of
the cloud (i.e. for example the local velocities and atomic
densities in the cloud). This type of description corre-
sponds to a high dimensional model, associated with par-
tial differential equations. Here, for the sake of simplicity,
we choose to limit our description to the center of mass
(CM) location r, and the total number of atoms n in the
atomic cloud. This allows us to model the system with or-
dinary differential equations, and reduces the dimension
to seven, and even three in a 1D model. As it is shown
in the following, the use of this description appears to be
sufficient to understand the main mechanisms of the in-
stabilities.

The number of atoms n is deduced from the total fluo-
rescence of the atomic cloud. However, this measure must
be used with care, because the fluctuations of the fluores-
cence originate also in the fluctuations of the scattering
rate. For this reason, in the following, we take into ac-
count only the frequency components with an amplitude
large as compared to the spectrum background. As a re-
sult, as we will see below, only low frequency components,
of the order of few Hz, appear to be significant. In the
same way, r is measured through the differential signal
of a 4-quadrant photodiode (4QP) measuring the fluores-
cence of the cloud. In fact, we used two 4QP forming an
orthogonal dihedral: this does not allow us to reconstruct
the actual 3D motion, but gives access to projections of
this motion on two different axes, and prevents the mea-
sure from line-of-sight effects due to the optical thickness
of the cloud. We checked that whatever the type of dy-
namical behavior, the motion components r recorded by
both 4QP have the same properties and are qualitatively
identical. In the following, the “CM motion” refers to a
component r of this motion recorded by one of the 4QPs.
In practical, n is deduced from the total signal received
from the 4QPs. In addition to the 4QPs, two video cam-
eras monitor the shape of the cloud. Because of their poor
resolution as compared with the 4QPs, the video cameras
are not used to record the dynamical variables. They have
been essentially used in the first stages of the experiment,
to control that there is no discrepancy between the shape
dynamics and the CM dynamics.

Instabilities depend on the MOT parameters. Among
these parameters, some are easily controllable, and will
be referred in the following as control parameters. They
are the detuning ∆0 of the MOT, the magnetic field
gradient G, the MOT beam intensities I1 and the re-
pumper laser intensity Irep. Other parameters cannot be
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Table 1. Range of the parameters used in the present exper-
iment. G is the magnetic field gradient, I1 is the intensity of
the forward beam, ∆0 is the detuning and wT is the trap laser
beam waist. Is is the saturation intensity (Is = 1.1 mW) and
Γ is the natural width of the transition. The last column indi-
cates the default parameter values used to obtain the results
reported in the present paper.

range default set

G (Gcm−1) G ≤ 14 14

I+ = I/Is 4 ≤ I+ ≤ 20 6

wT (mm) 3 ≤ wT ≤ 10 3

∆0 ∆0 ≤ −0.5 -

considered as control parameters, because they are not
easily controllable or measurable in our experimental set-
up. Among these parameters, the alignment of the MOT
beams appeared to be crucial in the experiment. We limit
the present study to the case where beams are aligned.
When misaligned, most of the dynamical characteristics of
the cloud change qualitatively [5]. The MOT beam waists
play also a main role on the dynamics, but in practice,
they cannot be changed easily independently from the
other parameters, in particular I1. However, two differ-
ent values have been used in the experiments, and their
effects on the dynamics are well understood. Finally, the
vapor pressure in the cell has probably also a large in-
fluence on the dynamics. Unfortunately, this parameter is
not easily measurable in our experimental set-up. More-
over, as it is shown later, it does not appear explicitly in
the model, but its impact on the dynamics may be esti-
mated through the equilibrium population of the cloud.
The parameter ranges explored in the present experiment
are summarized in Table 1.

3 Experimental results

Instabilities have been described in [9] for a given set of pa-
rameters. In the following, we extend this description for
the whole range of parameters where stochastic instabili-
ties appear. A first fundamental control parameter is the
MOT beam intensity, whose value determines the type of
observed instabilities. At low MOT beam intensities, typ-
ically less than 10Is (Is = 1.1 mW/cm2 is the saturation
intensity), the cloud exhibits S-instabilities (S stands for
stochastic). For MOT beam intensities larger than 10Is,
C- (for cyclic) instabilities appear [10]. As the aim of the
present paper is to discuss about the stochastic instabili-
ties, we keep a detailed presentation of the deterministic
C-instabilities for another paper. However, the two types
of instabilities cannot be completely separated, and the
domains of appearance of both types of instabilities will
be discussed.

As discussed above, S-instabilities appear at low MOT
beam intensities, and are characterized by large fluctu-
ations of the shape of the cloud appearing in a limited
range of the parameters. From the experimental point of

Fig. 2. Evolution of the signal amplitude ∆r as a function of
the detuning ∆0. Parameters are those of the default set of
Table 1.

view, this last point is essential, because it is at the origin
of the introduction of the concept of instabilities of the
MOT. Indeed, if the noisy dynamics is the same whatever
the parameter values, it is clear that the problem becomes
as trivial as the reduction of technical noise in an exper-
iment. On the contrary, the motion of the MOT grows
suddenly in a narrow range of the parameters, as it is il-
lustrated in Figure 2, where the amplitude ∆r of the r
fluctuations is represented as a function of the control pa-
rameter ∆0. Far from the unstable area, e.g. at large |∆0|,
the cloud is stable in shape and density. When the control
parameter is tuned to the unstable area, instabilities ap-
pear progressively, and the amplitude grows until a maxi-
mum ∆rmax at ∆0 max � −1.95 (∆0 is expressed in units of
the natural width Γ of the atomic transition). There is no
abrupt boundary between the stable and unstable areas:
the limits given below corresponds to ∆r = ∆rmax/10.
In this case, for the set of parameters of Figure 2, insta-
bilities appear for −2.5 < ∆0 < −1.7 (for ∆0 > −1.7,
the population in the cloud vanishes). The unstable range
depends on the other parameters, such as the beam in-
tensities, the vapor pressure or the magnetic field gradi-
ent. For example, for a less populated cloud, due e.g. to
a different vapor pressure in the cell, all other parameters
being the same as previously, instabilities will appear at
smaller detuning. However, whatever the parameters used
in the experiments, in the range given in Table 1, we have
−3 � ∆0max � −1, and instabilities never occur on a
range larger than 1.

Figure 3 shows a typical unstable behavior of r. It ap-
pears as an erratic signal, with a flat spectrum (Fig. 4).
Significant components appear only at low frequencies,
typically for values smaller than νn ≈ 2 Hz (Fig. 4b),
and the dynamics is essentially along the first bisector of
the three forward beams. The behavior of r and n are sim-
ilar, with a cross correlation coefficient larger than 0.8. To
determine if these instabilities have a deterministic origin,
several tools are offered through the nonlinear dynami-
cal analysis of the time series. As the MOT is dissipa-
tive, a deterministic dynamics should have an attractor,
which can be reconstructed easily for a low dimensional
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Fig. 3. Experimental record of the time evolution of a compo-
nent of the CM location of the atomic cloud. Experimental pa-
rameters are the default ones given in Table 1, with ∆0 = −2.
The mean cloud population is 1.5 × 108 atoms and the cloud
size is 1 mm.

Fig. 4. Power spectra corresponding to the behavior illustrated
in Figure 3. In (a) CM location, and in (b) cloud population.
The scales are linear.

dynamics. The result, not presented here, appears as a set
of randomly distributed points: in particular, it does not
present any fine structure. Poincaré section and 1D maps
confirm this absence of order in the dynamics. This could
be due to a lack of resolution of the measures, but the
general shape of the trajectories rather suggests that the
behavior is stochastic (or chaotic with a high dimensional
dynamics). Because this behavior appears to be a stochas-
tic dynamics with only low frequency components, it will
be referred in the following as SL instabilities.

In some situations corresponding to given ranges of pa-
rameters [9], the r dynamics is altered by the appearance
of spontaneous large amplitude oscillation-like bursts. As
illustrated in Figure 5, the signal inside the bursts is not
periodic, although it is clearly dominated by a given fre-
quency. These bursts are relatively scarce, and the global
shape of the signal remains that of Figure 3. The bursts
appear in fact as the most spectacular consequence of a
deeper change of the dynamics, which is the appearance
of a second characteristic time. This appears clearly in
the spectrum of r (Fig. 6a) as a peak centered at a fre-
quency νr, which depends on the parameter values, but
ranges typically between 10 and 100 Hz. This short char-

Fig. 5. Experimental record of the time evolution of a com-
ponent of the CM location of the atomic cloud in the case of
the S behavior. Experimental parameters correspond to the
default set given in Table 1, with ∆0 = −1.5. The mean cloud
population is 1.5 × 108 atoms and the cloud size is 1 mm.
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Fig. 6. Power spectra corresponding to the behavior illustrated
in Figure 5. In (a) CM location, and in (b) cloud population.
The scales are linear.

acteristic time appears only on the r dynamics, and does
not affect the n dynamics. This is clearly visible in Fig-
ure 5b, where the bursts do not appear on the signal. In
the same way, the n spectrum (Fig. 6b) has no significant
components at νr. In fact, this spectrum remains essen-
tially unchanged as compared to that of Figure 4b, with
no frequency component larger than 2 Hz. This is not sur-
prising, as the atom number in a MOT is known to evolve
with slow time scales, of the order of 1 s. We have checked
that the low frequency component dynamics of r and the
dynamics of n remain correlated. This behavior will be
referred in the following as SH -instabilities.
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Fig. 7. This figure illustrates the evolution of the behavior as a
function of the detuning for I1 = 6.8 and Irep = 1.5 mW/cm2.
The full line reports the population, while the dashed lines
separate the domain of different behaviors: st. stands for stable,
S for S-instabilities and C for C-instabilities.

When the trap beam intensity I1 is increased,
S-instabilities still exist, but they are progressively
superseded by C-instabilities. These instabilities differ
drastically from S ones [10]: they can be either periodic or
erratic, but in both cases, they are cyclic, and the motion
amplitude is much larger. However, as for S-instabilities,
C-instabilities exist in a limited range of ∆0, which value
depends on the other parameters. But it is systematically
between ∆0 = −3 and resonance, and the maximum de-
tuning range is of the order of 1.

As I1 is increased, the disappearance of S-instabilities
occurs progressively, in favor of C-instabilities. For inter-
mediate values of I1, both types of instabilities exist. Their
typical distribution versus ∆0 is illustrated in Figure 7: far
from resonance, the cloud is stable; as the resonance is ap-
proached, S-instabilities appear for a detuning ∆0 = ∆1.
Then C-instabilities appear in ∆2 > ∆1. If the detuning is
still increased, C-instabilities disappear in ∆3 at the ben-
efit of a stable behavior. Finally, the cloud vanishes in ∆4.
As I1 is increased, the width δ12 = ∆2 − ∆1 decreases in
favor of the interval δ23 = ∆3 −∆2, while the total unsta-
ble interval δ13 = ∆3 −∆1 remains more or less constant.
When C-instabilities merge for I1 = 4Is, they appear on a
narrow interval δ23 � 0. This interval increases rapidly un-
til I1 = 7.5Is and δ23 = 0.8. For I1 > 7.5Is, δ23 increases
more slowly, to reach the value of δ23 = 1 in I1 = 20Is,
where S-instabilities have completely disappeared.

To conclude this section, let us summarize the main
properties of the instabilities: they appear to be stochas-
tic at a time scale larger than 0.5 s. They may exhibit a
second dynamical component with time scale smaller than
10−2 s and acting only on r. The low frequency component
corresponds to a CM motion along the first bisector of the
three forward beams. Finally, they appear only in a lim-
ited range of the parameters, suggesting a nonlinear origin
of the instabilities. This last point was also suggested by
different tests showing that beam phase fluctuations are
not at the origin of instabilities [9].

4 Model

To understand the dynamics observed in the experiments,
we build a phenomenological model taking into account

the shadow effect. The aim here is not to model as finely
as possible the experimental system, but on the contrary
to make a model as simple as possible, enlightening the
fundamental mechanisms leading to the instabilities.

The model that we used here has already been de-
scribed in [10]. It is based on the shadow effect induced
by the intensity gradients produced by the absorption of
the trapping laser beams in the cloud [4,11]. The shadow
effect generates a force compressing the cloud. In the case
where the counter-propagating beams result from the re-
flection of the three forward beams, this compression is
accompanied by a displacement of the CM along the first
bisector of the three forward beams: indeed, the backward
beams are less intense than the forward ones because of
the absorption in the cloud, and so the latter literally push
the cloud off its equilibrium location. The main role of the
shadow effect in the instabilities is suggested in the exper-
iments (i) by the observed correlation between the n and
slow CM dynamics and (ii) by the fact that the slow dy-
namical component of r displaces the cloud along the first
bisector of the three forward beams. The fundamental role
of the shadow effect in coupling the population and the
CM position of cold atom clouds was already reported
in [12]. In that experiment, bistability in the population
dynamics was observed by perturbing the atomic cloud
with a highly-focused laser beam, and shadow effect is
shown to be the dominant nonlinearity.

We built a 1D model taking into account the shadow
effect in a MOT where counter-propagating beams result
from the reflection of the three forward beams. As we are
interested here in the collective motion, we use as variables
the location z of the center of mass of the cloud along the
unique axis z of the system, and the number of atoms n
inside the cloud. The origin of z coincides with the “trap
center”, that is, the zero of the magnetic field. Thus, the
motion of z may be described by the equation:

d2z

dt2
=

1
M

FT (1)

where M is the mass of the cloud and FT the global
force exerted on the atoms by the two counterpropagat-
ing beams. To evaluate FT , we assume a multiple scatter-
ing regime, i.e. a constant atomic density ρ in the cloud.
The atoms are distributed between zmin and zmax, and the
quantity ∆z = zmax − zmin is the longitudinal size of the
cloud. We introduce a constant cross-section S, allowing
us to connect ∆z to n:

n = ρS∆z. (2)

The repulsive force induced by the multiple scattering is
an internal force, and thus does not affect directly the
center of mass motion. It is also the case for the attrac-
tive force induced by the shadow effect, which acts on FT

only through the asymmetry between the forward and
backward beams. The forward beam is polarized σ+ and
has an input intensity I1. After the crossing of the cloud,
its output intensity is I2. This is also the input intensity
of the backward beam, which is polarized σ−. After the
crossing of the atomic cloud, the output intensity of the
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backward beam is I3. We have obviously I1 > I2 > I3.
FT is proportional to the number of photons absorbed
per unit time, i.e. S(I1 − I2)/�ωL for the forward beam
and S(I2−I3)/�ωL for the backward beam (�ωL is the en-
ergy of one photon, ωL being the laser angular frequency).
FT is obtained by multiplying the difference between both
quantities by �kL

FT =
S

c
(I1 − 2I2 + I3). (3)

To evaluate I2 and I3, we need to solve the propagation
equation of light inside the cloud. To simplify the calcula-
tions, we choose to model a Fg = 0 → Fe = 1 transition:
this is the simplest one leading to a magneto-Doppler ef-
fect. This choice does not allow us to reproduce the sub-
Doppler effects, neither the photon redistribution between
the two waves, but as shown in [10], it allows us to explain
most of the experimental behaviors.

The z-axis is chosen as quantification axis, and we in-
troduce the ground state |g〉 and the three Zeeman sub-
levels of the excited state |e0〉 et |e±〉. Because of the ki-
netic momentum conservation, |e0〉 is not coupled to the
light field, and thus, the model is reduced to a three level
system, {|g〉, |e−〉, |e+〉}. The interaction with light is gov-
erned by the Rabi frequency Ω± and the effective detun-
ings ∆±, taking into account the Doppler et Zeeman vari-
ations:

∆± =
1
Γ

(∆0 ∓ kv ∓ ω′
Bz) =

1
Γ

(∆0 ± 2δ) (4)

where k is the wave vector of light and ω′
B the Zeeman

shift, measured in angular frequency by unit of length.
The value of the atomic variables is given by the station-
ary solution of the optical Bloch equations for the density
matrix σ:

σ̇ =
1
i�

[H, σ] + σ̇relax. (5)

The Hamiltonian H of coupling with light may be written
as a function of ∆± and Ω± in the {|g〉, |e−〉, |e+〉} basis:

H = �




0 Ω−/2 Ω+/2

Ω∗
−/2 −∆− 0

Ω∗
+/2 0 −∆+


 . (6)

The relaxation rates σ̇relax are different for the excited
states, the optical coherences and the ground state:

( ˙σee)relax = −Γσee, (7a)

( ˙σeg)relax = −Γ

2
σeg, (7b)

( ˙σgg)relax = −Γ (σ++ + σ−−). (7c)

The time scale of the internal variables is Γ−1, and so is
much shorter than that of the external variables z and v.
Thus the stationary solution of equation (5) can be used.
The solution for the populations of the excited states
Π± = σ±± can be obtained analytically. On the other
hand, as the redistribution of photons between the beams

is forbidden, Π± is directly proportional to the absorp-
tion rate of the beams, and the intensity gradient can be
written:

dI±
dz

= ∓Γ�ωLρΠ±. (8)

By injecting the analytical solution of Π± in this equation,
we obtain the following equations of propagation:

dI+

dz
= −Γ�ωρ

θω+ω− + C−ω+

1 − A+ω+ − A−ω− + 3θω+ω−
(9a)

dI−
dz

= Γ�ωρ
θω+ω− + C+ω−

1 − A+ω+ − A−ω− + 3θω+ω−
(9b)

where:

ω± = −I±
2γ

, (10a)

γ =
1
4

[
(α + β+ + β−)2 +

(
β+ − β−

∆0

)2
]

, (10b)

α =
1 + 2µ

4
+ ∆+∆− +

δ2

2
(µ − 1) , (10c)

β± =
α

2
± (∆0 ± δ)

(
δ

2
+ ∆0 (µ+ − µ−)

)
, (10d)

µ± =
I±

4 (1 + δ2)
, (10e)

µ = µ+ + µ−, (10f)
θ = β+β− + α (β+µ+ + β−µ−) , (10g)

A± = 2β∓ + α (2µ± − µ∓) , (10h)
C± = −β± ± α (µ+ − µ−) . (10i)

These equations appear as the ratio of two polynomials
of high order, and an intuitive interpretation of this re-
sult is difficult. However, a numerical resolution of these
equations leads to a rigorous evaluation of FT .

The cloud population dynamics is modeled by a “feed-
loss” rate equation [14]:

dn

dt
= B (ne − n) (11)

where we have introduce the population relaxation B and
the atom number in the cloud at equilibrium ne, which is
linked to the loading rate L by L = Bne. ne is assumed
to depend on the CM location, to take into account the
losses variation when the cloud moves from the trap cen-
ter. We do not know the exact form of this dependence,
because this variation may have several origins. However,
we can suppose that the main contribution comes from
the transverse distribution of the trap laser beam, which
is Gaussian. For sake of simplicity, we keep only the first
terms from its Taylor’s series, i.e. the quadratic term. In
fact, we checked that the exact dependence of ne does not
change drastically the results given below. So we write:

ne = n0

[
1 −

(
z

z0

)2
]

(12)
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where n0 is the equilibrium cloud population at the trap
center and z0 a characteristic length. Atoms in |z| > |z0|
are considered as lost: this is taken into consideration
when n is deduced from equation (2).

Finally, we introduce the reduced variables Z = z/z0,
V = v/vr and N = n/n0, where vr is the recoil velocity
(vr = �k/m), and we obtain the following autonomous
system of equations:

dZ

dt
= V

vr

z0
, (13a)

dV

dt
=

1
Mvr

FT , (13b)

dN

dt
= B

(
1 − Z2 − N

)
. (13c)

Most of the theoretical parameters are the exact counter-
part of the experimental parameters, as e.g. the magnetic
field gradient or the beam intensities. In this case, we used
in the model the same values as those of Table 1. In the
same way, B can be easily evaluated through the experi-
mental loading rate of the MOT. We found 3 s−1, which
is compatible with the typical frequency range reported
in the literature. We used this value in the model, but we
checked that changing B in the interval 1 ≤ B ≤ 5 s−1

has no consequences on the dynamics. On the other hand,
some parameters are more difficult to evaluate, either be-
cause of the simplicity of the model or because they can-
not be measured easily in the experiment. For example, n0

has not a simple experimental counterpart, but depends
on several experimental parameters, as e.g. the repump-
ing laser intensity or the vapor pressure in the cell. For
this reason, a large interval of n0 values has been used
for the simulations (Tab. 2). The density ρ and the cross-
sectional area S, which play the same role, have a meaning
only in the context of a 1D model, while they correspond
to variables in the experiments. They are fixed in the sim-
ulations at experimental averaged values, and they have
been varied on a wide range to check that their value is
not critical. Finally, the parameter z0 has not exact ex-
perimental counterpart, as it is linked to both the trap
beam waist and intensities. Indeed, the relevant size for
the atoms is not the beam waist, corresponding to an in-
tensity decreased by a ratio e−2 as compared to the center
of the beam, but rather the location where the local beam
intensity decreases under Is. This value is much larger
than w0 for intense beams.

In order to check if the model can be more simplified,
we tried to reproduce the unstable dynamics of the cloud
with the first terms of the Taylor’s series of equations (9a)
and (9b), but we needed to keep several orders and did not
obtain simpler equations. Another possible approximation
concerns the different terms appearing in ∆±, in equa-
tion (4). Using the values given in Table 2, one sees easily
that the ∆0 term and the Zeeman shift are of the same
order of magnitude, while the Doppler shift goes to zero
at equilibrium, but can be the largest term out of equi-
librium. In these conditions, no approximation is possible.
Therefore, we use equations (13) in the calculations.

Table 2. Parameters used in the numerical simulations. The
range corresponds to the interval explored numerically, while
the different sets refer to most of the results presented in this
paper.

range set #1 set #2

G (Gcm−1) 14 14 14

B (s−1) 1 ≤ B ≤ 5 3 3

I1 2 ≤ I1 ≤ 30 25 10

ρ (cm−3) 1010 ≤ ρ ≤ 3 × 1010 2 × 1010 2 × 1010

S (m2) 10−6 ≤ S ≤ 3 × 10−6 10−6 10−6

z0 (m) 10−2 ≤ z0 ≤ 3 × 10−1 3 × 10−2 3 × 10−2

n0 107 ≤ n0 ≤ 109 108 2 × 107

∆0 5 ≤ ∆0 ≤ 0 −1.5 −0.23

To perform the comparison between the experiments
and the present model, we need to study the behavior
of the system when noise is added. Noise can be added
in equations (13) on any parameter, and as we were not
able in our experiments to identify clearly the main source
of noise, we tried theoretically several parameters, as the
beam intensity I1 or the equilibrium population n0. In this
case, the stochastic model corresponds to equations (13)
where the parameter I1 (resp. n0) is replaced by (1 + ζ) I1

(resp. (1 + ζ)n0), where ζ(t) is the noise component. We
also simulated several types of noise: Gaussian white noise,
but also colored noise with different distributions of the
frequencies. All configurations give identical results: on the
one hand, the choice of the noisy parameter is not critical;
on the other hand, the spectrum of noise does not alter
the response spectrum, except obviously that it depends
on the relative weight of the different frequencies in the
noise. Thus, for sake of clarity, all the results reported in
the following have been obtained by applying Gaussian
white noise on I1.

5 Stationary solutions

In the previous section, we built a relatively simple model
where the cloud is described by a set of three equations
that do not depend explicitly on the time. Such a sys-
tem is known to be able to exhibit a complex dynamics,
including chaos, which could explain the experimental in-
stabilities. To know if such a complex dynamics occur in
our conditions, the first step is to evaluate the stability of
the stationary solutions. The stationary solutions (Vs, Zs,
Ns) of the model with the shadow effect are easily deduced
from equation (13) when the left side is put to zero. Equa-
tion (13a) gives immediately Vs = 0. From equation (13c),
one finds that the stationary solutions Zs of the CM lo-
cation and Ns of the population are linked by the simple
expression:

Ns = 1 − Z2
s . (14)

Therefore, the discussion is reduced to the analysis of Zs.
Zs is the solution of FT = 0 in equations (13b). This
equation can be resolved numerically: its global shape is
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Fig. 8. Stationary solutions of equations (13) versus n0 and
∆0. The figure represents Zs. Other parameters correspond to
the set #1 given in Table 2. The definition of the N, F, SN
and SF zones (each corresponding to different level of grays) is
given in the text.

illustrated in Figure 8, where it is plotted as a function of
∆0 and n0.

A first characteristic of the Zs diagram is that Zs goes
to 1 (i.e. Ns goes to zero) at resonance. This vanishing
of the cloud, also observed in the experiments, is a well-
known consequence of the inefficiency of the Doppler cool-
ing close to resonance. It is here enhanced by the shadow
effect and the displacement of the cloud. The disappear-
ance occurs suddenly for small n0, and becomes softer as
n0 increases. An interesting point is that for small n0, the
abrupt increase of Zs is linked to a very narrow bistable
cycle. As n0 is increased, the bistable cycle shifts towards
smaller Zs and smaller ∆0, and the vanishing of Zs be-
comes progressive.

The main characteristic of the Zs diagram is the pres-
ence of several abrupt slope changes in the stationary
solutions, leading to a fold in the parameter space. The
shape of the fold depends on the parameters, in particu-
lar on n0. Figure 9 shows four examples corresponding to
situations leading to basically different atomic dynamics.
For n0 = 0.5 × 108 (Fig. 9a), Zs increases smoothly with
∆0 (i.e. Ns decreases slowly). The vanishing of the cloud
through a narrow bistable cycle is not visible on the graph,
as it occurs closer from resonance. As n0 increases, the
bistable cycle appears for smaller Zs (and thus larger Ns),
and becomes physically significant. Figure 9b shows Zs for
n0 = 2.5×108 and a bistable cycle for −0.3 � ∆0 � −0.25.
If n0 is further increased, the bistable cycle disappears,
but it remains a fold corresponding to two abrupt slope
changes of Zs versus ∆0 (Fig. 9c, n0 = 3.4× 108). If n0 is
still increased, the fold remains, but it becomes smoother
(Fig. 9d for n0 = 4 × 108).

The dynamics of the cloud is determined by the stabil-
ity of these stationary solutions. In particular, if no sta-
tionary solutions are stable, complex dynamics could be
obtained. The stability of the above stationary solutions
is evaluated through a linear stability analysis, which as-
sociates to each stationary solution its three eigenvalues,
corresponding to the stability following its three eigendi-

Fig. 9. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations (13). The full (resp. dashed)
line corresponds to a stable (resp. unstable) solution. In (a),
n0 = 0.5× 108; in (b) n0 = 2.5× 108; in (c), n0 = 3.4× 108; in
(d), n0 = 4 × 108. Other parameters correspond to the set #1
of Table 2.

rections in the 3D phase space of our model. The real part
of the eigenvalue, corresponding to a damping rate, de-
termines the stability (stable if negative). The imaginary
part, when different from zero, is associated to an angu-
lar eigenfrequency, also called relaxation frequency, which
play a main role in the dynamics. A pleasant — and simple
— way to describe the stationary solutions is to use their
phase space representation, where each stationary solution
corresponds to a fixed point with its properties depend-
ing on its eigenvalues. Let us remember that the standard
terminology distinguishes the stable node (all eigenvalues
real and negative), the stable focus (all real parts negative,
two eigenvalues complex conjugate), the saddle node (all
eigenvalues real, at least one positive) and the saddle focus
(at least one real part positive, two eigenvalues complex
conjugate). For sake of simplicity, this terminology will be
used in the following.

The set of points of vertical tangency in Zs determines
a line which delimits the unstable stationary solution of
the medium branch of the bistability cycle. Linear sta-
bility analysis shows that the fixed point in that area is
a saddle-node with real eigenvalues, two being positive
and one negative. But the unstable stationary solutions
extend beyond this area. In particular, the stationary so-
lutions can also be unstable on a part of the upper branch
of the bistable cycle, and even outside the bistable cycle,
when the stationary solution is unique. This is illustrated
in Figure 8 where the nature of the stationary solution is
indicated by a level of gray and a code. In the SN zone,
the fixed point associated with the stationary solution is
a saddle node, i.e. the stationary solution is unstable, and
its three eigenvalues are real, two being positive. In the
SF zone, the fixed point is a saddle focus, i.e. the sta-
tionary solution is unstable, and two of its eigenvalues
are complex with a positive real part, and the third one
is real negative. In the F zone, the fixed point is a sta-
ble focus, i.e. the stationary solution is stable, and two of
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Fig. 10. Evolution as a function of the detuning of the sta-
tionary solution Zs and its eigenvalues, for the parameters of
Figure 9d. The stationary solution is given through the full
bold line in the upper side of the figure. The dashed line noted
ω represents the imaginary part of the complex eigenvalues,
while the full line corresponds to their real part λ. The third
eigenvalue is always real negative, almost constant and every-
where larger than λ. It cannot be distinguished from the zero
axis at the scale of the figure.

its eigenvalues are complex with a negative real part, the
third one is real negative. Finally, in the N zone, the fixed
point is a stable node, i.e. the stationary solution is sta-
ble and all eigenvalues are real negative. The dashed line
indicates the location of the bifurcation, i.e. the transi-
tion from stable to unstable stationary solutions. In most
cases, it occurs from stable focus to saddle focus, through
a super-critical Hopf bifurcation.

As the detuning is varied, four typical situations
may occur, already illustrated in Figure 9. For small n0

(Fig. 9a), Zs is always stable, and its dependence ver-
sus ∆0 is almost flat (except very close from resonance):
we expect a stationary cloud slightly moving with the de-
tuning. In the bistability area (Fig. 9b), the central branch
of the bistability cycle is unstable, as usual in such a situ-
ation, but the upper branch is also partly unstable, reduc-
ing drastically the parameter range where the system is ef-
fectively bistable. However, a narrow bistable zone should
be observed. As n0 is still increased, only one stationary
solution remains (Fig. 9c), which is unstable on the fold.

Finally, for large n0 (Fig. 9d), the solution is always
stable (F zone), except very close from resonance. Thus
we expect to observe a stationary cloud moving with ∆0.
However, because of the fold, this moving is non linear,
and on the fold, for −0.45 < ∆0 < −0.35, Zs is more sen-
sitive to the ∆0 value, because the slope here is larger. On
the other hand, a closer look to the eigenvalues (Fig. 10)
shows that at the level of the fold, the real part λ of
the complex eigenvalues λ ± iω is close to zero, while the
eigenfrequency crosses a minimum. This is more evident in
Figure 11, where the same situation is illustrated for a dif-
ferent set of parameters. The vanishing damping rate |λ|
associated to an increased sensitivity to the parameter
values means that a small perturbation will cause a large
undamped reaction of the system, with relaxation oscil-
lations at a frequency ω crossing a minimum while ∆0

is varied on the fold. In the fold inflection point, where
the slope is maximum, the eigenfrequency and damping
rate are minimum: the effects of perturbations is expected
to be maximum at this point. Note that the evolution

Fig. 11. Same as Figure 10 for parameter set #2 of Table 2.
For sake of clarity, the evolution of λ has been truncated for
small detunings, where it becomes almost linear, reaching e.g.
the value of λ = −1500 for ∆0 = −0.3.

of λ and ω around the inflection point is asymmetric: the
damping rate and relaxation frequency increase rapidly
for detunings smaller than the inflection point, while they
remain of the same order of magnitude on the other side.
This asymmetry is expected to have consequences on the
dynamics.

Deterministic instabilities are expected to occur for pa-
rameters where all stationary solutions are unstable, i.e.
in the SF monostable zone [10]. In all other areas, the sta-
tionary solutions are stable, and therefore, deterministic
instabilities cannot occur. However, the presence of the
fold and the proximity of a Hopf bifurcation generate a
type of stochastic behavior similar to instabilities [9].

Indeed, on the one hand, the proximity of a Hopf bi-
furcation is known to favor the appearance of coherence
resonance [16], as discussed in [9]. Let us recall that coher-
ence resonance is the counterpart of stochastic resonance
in autonomous systems [15]. Stochastic resonance appears
in some forced systems: it may be seen as an amplifica-
tion by noise of the system response to a forcing. In other
terms, the signal to noise ratio of the output periodic sig-
nal resulting from the modulation exhibits a maximum
when the noise amplitude increases. In stable autonomous
systems, the behavior is not periodic, but a phenomenon
similar to stochastic resonance can lead to an amplifica-
tion of an internal resonance: it is the internal stochastic
resonance, or coherent resonance [17,18]. Coherent reso-
nance is also known to generate noise induced coherent
oscillations, which explain some of our experimental ob-
servations, as shown in [9].

On the other hand, as shown above, the particular con-
figuration of the eigenvalues on the stable fold makes the
system very sensitive to small perturbations, i.e. to noise,
and thus we expect a large increasing of the response to
noise on the fold. The resulting behavior looks like in-
stabilities, whereas it is simply noise amplification. The
behavior obtained on the stable fold when noise is taken
into account is detailed in the next section.

6 The stable fold: stochastic instabilities

In [10], it has been shown that the model is able to repro-
duce the C-instabilities, in the monostable SF zone. On
the contrary, S-instabilities do not appear in this situa-
tion. In fact, it has been shown in [9] that S-instabilities
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Fig. 12. Evolution of the signal standard deviation σ (full line)
and of the cloud location stationary solution Zs (dashed line)
as a function of the detuning ∆0. White noise is applied to I1

with ζ = 10−3. Other parameters correspond to the set #2 of
Table 2.

are not instabilities in the usual significance, but the result
of the amplification of the system intrinsic noise, and thus
it is necessary to add noise in the simulations to observe
S-instabilities. This dynamics could appear when the sta-
tionary solution of the MOT is not stable, but would be
difficult to analyze, because in this case the resulting dy-
namics would be the superimposition of the determinis-
tic instability with the stochastic motion, the latter being
masked by the former. For this reason, the present section
is devoted to the study of the influence of noise on the sta-
ble stationary solutions of the model, in particular in the
vicinity of the fold. As the model here is slightly different
from that used in [9], where the cloud was considered as
a point with a global absorption of the forward beam, we
could expect different results from those obtained in [9].
It is shown in the following that the modifications intro-
duced in the model do not alter the previous conclusions,
i.e. that S-instabilities are produced by noise amplification
on the fold.

To evaluate the response of the system to noise in the
vicinity of the fold, we have plotted the amplitude of the
motion perturbed by noise, versus the detuning, across the
fold (Fig. 12). The amplitude of the motion is measured
through the standard deviation σ of Z. Figure 12 has been
obtained for a Gaussian white noise applied on I1 with an
amplitude of 10−3, in a situation where the stationary so-
lutions are stable on the fold. Noise amplification appears
clearly on the fold, and mimics instabilities, as in the ex-
periments (Fig. 2). The maximum of the motion ampli-
tude, obtained for ∆0 = −0.23, corresponds to a standard
deviation of 1.1 × 10−3, i.e. 33 µm, in good agreement
with the experimental value. By comparison, the motion
amplitude is 0.036 for ∆0 = −3, i.e. the effect of noise is
30 times larger on the fold than in ∆0 = −3. Note that, as
similar motion amplitudes are obtained in the experiment
and in the model for a noise level ζ = 10−3, this gives us
in return an evaluation of the experimental noise level.

Thus, as for the model developed in [9], the fold plays
the role of a noise amplifier, leading to an unstable cloud
over a limited range of the parameters. The maximum of
the motion amplitude appears at the fold inflection point.
The amplitude decreases progressively and quasi symmet-
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Fig. 13. Dynamics obtained by resolving equations (13), with
the parameter set #2 and ∆0 = −0.926. White noise is applied
to I1 with ζ = 10−3.

rically on each side of this point, in spite of the asymme-
try of the eigenvalues discussed in the previous section.
The range where the instabilities can be observed, ap-
pears to be of the order of the “width” of the fold, that
we could define as the interval between the two abrupt
slope changes delimiting the fold (a more precise defini-
tion could be given, but is not useful for the following).
In the case discussed here, the range in detuning is 0.02,
i.e. much smaller than the experimental range, which was
typically of the order of 1. However, the width of the slope
is very dependent on the MOT parameters: for example,
in Figure 10, where I1 and n0 are different, the fold is more
than twice larger than in the present case. Thus there is
no doubt that it is possible to find a parameter set giv-
ing a correct fold width. However, because of the extreme
simplicity of the model as compared to the experiments,
such a search has no meaning: the aim here is just to show
that very few ingredients, including the shadow effect and
the noise, are able to reproduce the global experimental
behavior. We have now demonstrated that the noise re-
sponse can effectively have the appearance of instabilities
for some parameters. We will now examine in detail the
resulting dynamics, and compare it to the experimental
observations.

Figure 13 shows the time evolution of Z and N in
∆0 = −0.23, where the amplification is maximum. The
signal is of course stochastic, but several differences ap-
pear, on the one hand between the cloud response and
the applied noise, and on the other hand between the Z
and N evolutions. Indeed, while the applied noise is white,
a frequency dominates in the response, in particular for Z.
This is clearly visible on the signal, and of course on the
spectrum (Fig. 14a), where a peak appears at a frequency
ωS � 38 Hz. For N , it is possible, in the simulations,
to find frequency components at ωS (Fig. 14b), but with
a so weak amplitude that they have no physical meaning
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Fig. 14. Power spectra obtained by resolving equations (13)
with the same parameters as in Figure 13.

(note the difference between the vertical scales of Figs. 14a
and 14b). This behavior with two different characteristic
times is very similar to the experimental SH behavior il-
lustrated in Figure 6: in both cases, the higher frequency
component dominates the motion of the atoms, while the
number of atoms in the cloud is only driven by the low
frequency component.

In the experiments, the origin of the higher frequency
was not identified, as it does not correspond to a known
experimental characteristic frequency. However, we know
now that the stable stationary solution on the fold has
complex eigenvalues, and thus is associated with a relax-
ation frequency. As noise is known to be able to excite such
non linear resonance eigenfrequencies [19], it is interesting
to compare in the simulations the frequency appearing in
the dynamics with the eigenfrequency of the stationary
solution. This is illustrated in Figure 15 for different val-
ues of the detuning. The full and dashed lines concern
the stationary solutions: they shows the evolution of ω
and Zs versus ∆0. They are a reproduction of Figure 11,
and are recalled just for comparison. The squares give the
resonance frequencies of the noisy dynamics. They are ob-
tained by fitting the calculated spectra of Z, as illustrated
in Figure 14a, with a Lorentzian function. Similar fits on
the N spectra give the same results. Figure 15 shows that
for detunings larger than the fold inflection point, the
noisy resonance frequency and the eigenfrequency corre-
spond exactly. This confirms that the frequency appearing
in the dynamics is the relaxation frequency appearing in
the eigenvalues associated with the stationary solution.
Thus “instabilities” appear in fact as a noisy amplifica-
tion of the relaxation frequency of the MOT, through a
phenomenon already observed in many other systems, as
e.g. in lasers [19]: the small damping rate allows noise to
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Fig. 15. Evolution of the resonance frequencies as a function
of the detuning. The full and dashed line recalls the evolution
of ω and Zs, already shown in Figure 11. The squares represent
the resonance frequencies appearing in the dynamics, obtained
by fitting a Lorentzian function on spectra similar to those of
Figure 14. The bars give the width of the Lorentzian.

excite the relaxation frequency, altering the frequency dis-
tribution of the system response to noise.

For detunings smaller than the fold inflection point,
Figure 15 exhibits differences between the eigenfrequen-
cies and the resonance frequencies. A close look at the
dynamics of the cloud shows that the main point is not
this difference, but a dramatic broadening of the noise
resonance, leading to an indetermination of the resonant
frequency. This is illustrated in Figure 15, where the bars
associated with each point have a height of ∆ν, the width
of the Lorentzian peak obtained by fitting the Z spectrum.
On the inflection point, the resonance is narrow, as it ap-
pears in Figure 14. On the right of the inflection point,
the resonance remains narrow, reaching a maximum of
∆ν = 14 Hz in ∆0 = −0.2. On the contrary, for detunings
smaller than the inflection point, ∆ν increases rapidly,
reaching already the value ∆ν = 30 Hz in ∆0 = −0.235
(the inflection point is in ∆0 = −0.23). It is clear in Fig-
ure 15 that the discrepancy between the noise resonance
and the relaxation frequencies is linked to the width of
the resonance: as the resonance broadens, it also flattens,
and the central frequency becomes irrelevant. This is the
reason why the resonant frequencies for detunings smaller
than ∆0 = −0.26 are not reported on the figure.

This asymmetry in the dynamics around the fold in-
flection point is of course linked to the asymmetry in the
eigenvalues associated with the stationary solution. For
detunings larger than the inflection point, the damping
rate remains small (less than 45 s−1), and thus the noise
excitation of the relaxation oscillations remains efficient.
On the contrary, for detunings smaller than the inflec-
tion point, the damping rate increases rapidly, decreasing
the efficiency of the excitation, and leading to a flat reso-
nance. The consequence on the dynamics is illustrated in
Figure 16, where the power spectra of the Z dynamics are
represented for two different values of the detuning, lo-
cated symmetrically with respect to the inflection point.
In (a), for ∆0 = −0.22, i.e. for a larger detuning than
the inflection point, the resonance, centered on 50 Hz, re-
mains narrow (∆ν = 11 Hz), and thus significant. In (b),
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Fig. 16. Z spectra of the instabilities for two values of the
detuning situated symmetricallty with respect to the fold max-
imum. In (a), ∆0 = −0.22; in (b), ∆0 = −0.24. Note that the
vertical scale in (a) is five times larger than in (b).

for ∆0 = −0.24, i.e. on the other side of the inflection
point, the resonance, centered on 100 Hz, is already 60 Hz
wide, and also five times lower (note the different vertical
scales in (a) and (b)). Such a resonance is no more sig-
nificant from an experimental point of view: indeed, the
experimental dynamics is analyzed from time series with
a necessary limited number of points, leading to spectra
with a resolution much smaller than in the simulations. It
is clear that a resonance as those observed on the left of
the inflection point could not be detected in the experi-
ments, and thus one expects that in this situation, exper-
iments deliver non resolved spectra. It was effectively the
case for SL-instabilities (Fig. 4), and thus we can conclude
that the SL dynamics observed in the experiments is also
explained by the present model.

The results obtained in this section can be summarized
in the following way: when the parameters of the cloud
are such that the unique stationary solution is stable, and
therefore that no deterministic instabilities can occur, the
action of noise mimics instabilities. This originates in a
fold of the stationary solution, which plays the role of a
noise amplifier. Moreover, the particular properties of the
eigenvalues associated with the stationary solutions on the
fold — small damping rate and relaxation frequency —
lead to the existence of the stochastic regime: for detun-
ing larger than the fold inflection point, a resonance is
excited by the noise, leading to a dynamics with a domi-
nating frequency; for detuning smaller than the inflection
point, the damping rate increases, and the resonance van-
ishes. This allows us to interpret all the regimes observed
experimentally.

The particular properties of the eigenvalues discussed
above are in fact linked to the proximity of a Hopf bifur-
cation. Another known consequence of such a situation is
to favor the existence of coherence resonance, and such a
phenomenon exists effectively in our case [9]. Now, an in-
teresting question is to determine what are the exact con-
nections between all these phenomena, and in particular
if the existence of coherence resonance has a determining
role in that of instabilities. The answer is obviously: no!
Indeed, the essential ingredient for noise amplification is
the fold; the properties of the eigenvalues only determine
the time characteristics of the dynamics. In particular, we
have checked that with the present model, no coherence
resonance occurs when the MOT exhibits SL-instabilities.

7 Conclusion

It has been shown recently that the cloud of cold atoms
obtained from a magneto-optical trap may exhibit a com-
plex dynamics in the regime of high atomic densities. The
observed behaviors can be essentially separated in two
different types, depending of their nature: stochastic in-
stabilities [9] or deterministic instabilities [10]. The aim
of this paper was to describe extensively the experimen-
tally observed stochastic dynamics, and to understand its
mechanisms, through a model briefly presented in [10] and
detailed here.

A detailed analysis of the experimental results in the
stochastic regime shows a variety of dynamical behaviors,
which differ by the frequency components appearing in
the dynamics. Indeed, some instabilities exhibit only low
frequency components, while in other cases, a second time
scale, corresponding to a higher frequency, appears in the
motion of the center of mass of the cloud.

The simple stochastic 1D-model that we use here al-
lows us to retrieve and interpret these experimental dy-
namics. The model shows that the existence of instabil-
ities is linked to folded stationary solutions where noise
response is enhanced. Moreover, the proximity of a Hopf
bifurcation and the resulting conditions on the stability of
the stationary solutions — small damping rate and exis-
tence of a relaxation frequency — explains the existence
of several types of regimes: indeed, depending on the pa-
rameters, noise is sometimes able to excite the relaxation
frequency, leading to the appearance of the second time
scale in the dynamics. Globally, the agreement between
this over-simplified 1D model and the 3D experiments is
surprisingly good. Not only it allows us to make a qualita-
tive interpretation of the experimentally observed dynam-
ics, but also gives quantitative results compatible with the
experimental measures, in particular concerning the am-
plitude of the instabilities. However, it is clear that the
model needs several improvements to reach an accurate
quantitative description of all the experimental observa-
tions. For example, the 3D distribution of the atoms could
be taken into account through a set of partial differential
equations describing the local dynamics inside the cloud.
In this case, some effects which are not relevant in the
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present global model should be introduced. It is in par-
ticular the case of the long-range dispersive interactions
inducing local phase shifts of trapping beams and leading
to an inhomogeneous atomic distribution in the cloud [20].
Another point which should act on the quantitative val-
ues is the real distribution of noise in the experiments. As
the instabilities frequencies are very low, it is likely that
technical noise is not white, but on the contrary exhibits a
complex distribution linked to e.g. mechanical vibrations.
This could increase the lower frequency components, and
thus lead to a larger amplitude of the population fluctua-
tions.

The model also emphasized the close relations between
the stochastic and deterministic instabilities. Indeed, both
types of dynamics appear to be link to the same factors:
the effective dynamics depends mainly on the distance be-
tween the working point and the bistable cycles (or the
Hopf bifurcation). In fact, the dynamics described in the
present paper appears as the first sign of the deterministic
instabilities described in [10], and thus may be considered
as a noisy precursor to deterministic instabilities [8,21]. A
study of the phenomenon from this point of view should
put in evidence new properties of these instabilities.
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