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Abstract. The cloud of cold atoms produced by a Magneto-Optical Trap is known to exhibit instabilities.
We examine in this paper in which limits it could be possible to realize an experimental trap similar to
the configurations studied theoretically, i.e. mainly traps where one direction is privileged. We study the
static behavior of an anisotropic trap, where anisotropy results essentially from the use of two different
laser frequencies for the arms of the trap. Such a trap has very surprising behaviors, in particular the cloud
disappears for some laser frequencies, while it exists for smaller and larger frequencies. A model is build
to explain these behaviors. We show in particular that, to reproduce the experimental observations, the
model has to take into account the cross saturation effects. Moreover, the couplings between the different
directions cannot be neglected.

1 Introduction

The spectacular results obtained during the last decades
in the domain of the experimental quantum physics re-
quired all as a first step to cool atoms with a Magneto-
Optical Trap (MOT). The cold atoms produced in such
a MOT can then be put in lattices [1], used to produce
cold molecules [2] or be further cooled down to produce
Bose-Einstein condensates [3]. But the MOT itself is also
an interesting object. Many questions remain unanswered,
and the usual theoretical descriptions are hardly enough
to describe the stationary behavior of the cloud of cold
atoms produced by a MOT. In most cases, these simple
models are used because it is believed that they are suffi-
cient to describe quantitatively the stationary MOT. How-
ever, our fundamental understanding of the light-matter
interactions allows us to refine these models as much as we
want, with possibly the risk to find equations that cannot
be easily solved.

Indeed, in many situations, this cloud of cold atoms
is not stationary and exhibits spatio-temporal instabili-
ties [4,5], which are not reproduced by the usual models.
Recently, several new and more complete models were pro-
posed [4–11]. The search for a model describing correctly
the dynamics of cold atoms in a MOT was initially mo-
tivated by the hope to understand the mechanisms lead-
ing to the observed complex behaviors. But the interest
of such a model goes well beyond the cold atom physics.
Indeed, there are many relationships between cold atoms
and plasmas, as the former is a confined dilute object with
long-range interactions, as the latter [12,13]. As cold atom
experiments are far simpler to implement than plasma set-
ups, it has been considered to use cold atoms as a system
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model for some types of plasmas [7]. These links are very
concrete, as several groups use cold atoms produced by
a MOT as the starting point for the study of ultra-cold
plasmas [14].

The narrow link between the two research fields is
also illustrated by the different models proposed to re-
produce the MOT instabilities. While some models are
based on the usual description of the light matter inter-
actions [4,6,8,9,11], others are inspired by the plasma de-
scription [7,10]. Recently, a detailed study showed that
the cloud of cold atoms is described by a Vlasov-Fokker-
Planck equation, and the analogies and differences with
plasmas were extensively discussed [11].

All these models predict many interesting phenomena,
as e.g. deterministic instabilities [6], photon bubbles [15]
or rotons [16]. Unfortunately, none of them lead to a satis-
factory description of the experimental observations. For
most of them, the theoretical predictions differ deeply
from the experimental observations [5,7,10] or, at least,
predictions have not yet been observed [15,16]. In the best
cases, the models give a good qualitative description of the
observed dynamics [4,6]. But they modelize a 1D MOT,
and direct quantitative comparison with experiments is
not possible, as all experimental observations of the MOT
dynamics concern 3D MOTs. Thus, to go further, it is
necessary either to generalize these models in 3D, or to
realize 1D experiments.

A 1D MOT in this context is more precisely a MOT
where atoms are trapped in 3D, but where instabilities oc-
cur only along one direction of space, called in the follow-
ing the unstable direction. Such a MOT is an anisotropic
MOT rather than a 1D MOT. It could be obtained if the
unstable direction of space is not coupled to the other di-
rections. Unfortunately, the effective coupling between the

http://www.epj.org
http://dx.doi.org/10.1140/epjd/e2013-40242-y


Page 2 of 8 Eur. Phys. J. D (2013) 67: 211

different arms of a MOT has been poorly studied, while
several mechanisms are known to possibly induced such
a coupling. For instance, the well known multiple scat-
tering has never been studied from this point of view.
The cross saturation effects are also a possible coupling
mechanism, which is usually neglected. It is important to
evaluate precisely these couplings, as, if they cannot be
neglected, other solutions have to be used to force the
system to be stationary in two directions of space.

Various anisotropic traps have been studied in the
past. The interesting configurations for our purposes are
those where the anisotropy is introduced on a parameter
controlling the instabilities of the MOT. In references [8,9],
it is shown that at least two control parameters allow to
tune the trap from a stationary situation to an unstable
dynamics: the intensity of the laser trapping beams, and
the detuning between the laser trapping beam frequency
and that of the atomic transition used to cool the atoms.
The main difference between these two control parameters
concerns the range on which occurs the transition from a
stable behavior to instabilities. The results in reference [9]
show that for intensity, this range spreads over almost one
order of magnitude, whereas for the detuning, it is less
than a factor 2.

Traps with anisotropic laser beam intensities or mag-
netic field gradients have already been studied [17,18].
One of the main results is that for clouds with a large as-
pect ratio, multiple scattering disappears [17]. This puts
in evidence the coupling between the different directions
of space through the multiple scattering, and this means
that the anisotropy should be as small as possible to limit
the effect of this coupling. Thus in our case, introduc-
ing the anisotropy through the frequency detuning should
be a better solution, but to our knowledge, this type of
anisotropic trap has not yet been studied.

We present in this paper results about a dual frequency
trap with different frequency detunings along the different
axes. Experimental measurements show that such a trap
has very unusual behaviors, in particular the disappear-
ance of the atomic cloud for some detuning pairs, while
cold atoms are obtained on both sides of these frequencies.
We show that the usual models, which neglect the cross
saturation effects, are not able to reproduce these experi-
mental observations. We build another model which takes
into account the cross saturation effects, and show that
the behaviors predicted by this model are qualitatively
consistent with the experimental observations.

2 Experimental results

2.1 Experimental setup

We work with a Cesium-atom MOT in the usual σ+ −σ−
configuration. Each of the three arms of the trap is formed
by counter-propagating beams resulting from the reflec-
tion of the three forward beams, obtained from the same
laser diode. Beams propagate following three perpendic-
ular directions, one of them being the axis of the coils

producing the magnetic field. In this so-called parallel di-
rection, the forward beam is characterized by the intensity
I‖ and the detuning Δ‖ = ω‖ − ω0, where ω‖ is the beam
frequency and ω0 the atomic frequency. In the two other
directions, the beams are characterized by the intensity
I⊥ and the detuning Δ⊥ = ω⊥ − ω0. When I‖ = I⊥ and
Δ‖ = Δ⊥, we have the most common MOT. However, this
usual MOT is already not isotropic, although it is often
considered as so. Indeed, the magnetic field is produced
by a pair of coils in an anti-Helmholtz configuration. Thus
the magnetic field gradient along the parallel direction is
twice that in the perpendicular directions, leading to a
fixed anisotropy on the restoring force of the trap. We can
characterize such a trap as a balanced single-frequency
trap. As discussed above, we will focus here on the ef-
fects induced by a frequency anisotropy, i.e. a balanced or
unbalanced dual-frequency trap (Δ‖ �= Δ⊥).

As for any dynamical flow, the cloud is characterized
by variables, which are likely to vary as a function of space
and time, even for a given set of parameters. Typical vari-
ables of the cloud are its number of atoms and the spatial
distribution of these atoms, while the trap parameters are,
amongst others, the detunings and the beam intensities.
In the present study, we focus on the stationary cloud.
To characterize this cloud, we need to measure the values
of its variable, i.e. its number of atoms and the spatial
distribution of these atoms.

To measure the number of atoms, we just need a photo-
diode to record the total fluorescence emitted by the atoms
in the cloud. Fluorescence is proportional to the number
N of atoms in the cloud, and thus it is a good indicator
of N . However, the proportionality coefficient depends on
the laser intensities and detunings. For large saturations,
this coefficient may be considered as constant, but in the
other cases, it decreases as the detunings increase. In the
experimental results presented here, taking into account
this correction factor would lead to an increase of N by a
factor lower than 3 for large detunings. As this correction
induces no qualitative change in the behaviors described
here, we did not apply it on the curves shown below.

The distribution of atoms is usually measured through
the radius of the cloud. However, we introduce now a new
anisotropy in the trap, which is expected to lead to an
ellipsoidal cloud. Thus a measurement of the cloud size in
the two main directions appears necessary. This measure-
ment is performed by using a camera. Recorded pictures
are analyzed by a software which fits the atomic cloud on
a 2D gaussian. The result of the fit gives us the semi-axes
L‖ and L⊥ of the ellipsoid. These quantities, together with
the number of trapped atoms, depend on the parameters
of the trap, but are not independent: in the multiple scat-
tering regime, the size of the cloud grows with the number
of atoms. Fortunately, as soon as we are deep enough in
the multiple scattering regime, the ratio ε = L⊥/L‖ and
N are independent variables, and thus more appropriate
to characterize the cloud. Moreover, it is also convenient
to monitor the ellipticity ε, as we expect a correlation be-
tween ε and the anisotropy.
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Fig. 1. Measured number N of atoms in the cloud versus the
detuning Δ‖. The other parameters of the trap are Δ⊥ = −2Γ
and I‖ � I⊥ � 2IS .

2.2 Atomic cloud behavior

We have studied the evolution of the cloud as a function of
the frequency difference Δ‖ − Δ⊥, for different detunings
and trap beam intensities, including cases where intensi-
ties following the two directions are different. A typical
experimental measurement consists in recording the evo-
lution of the number N of atoms in the cloud and the
cloud sizes as a function of Δ‖, the other parameters, in
particular Δ⊥, I⊥ and I‖, being constant. The measure-
ments are then repeated for different values of Δ⊥, I⊥
and I‖.

Figure 1 shows the typical evolution of the fluorescence
on the interval where it is measurable. In this example,
Δ⊥ = −2Γ , where Γ = 2π × 5.234 MHz is the natural
width of the transition, −6.5Γ < Δ‖ < 0 and I‖ � I⊥ �
2IS , where IS = 1.1 mW/cm2 is the saturation intensity.
At the degeneracy Δ‖ = Δ⊥, we have a standard balanced
single-frequency MOT.

On each side of this degeneracy, at a typical frequency
difference Δ‖ − Δ⊥ = ±0.5Γ , the number of atoms ex-
hibits a gap. We did not study in details the mechanisms
at the origin of this behavior, mainly because in the scope
of the present work, it is more interesting to introduce
a large difference between Δ‖ and Δ⊥, to obtain a large
anisotropy. However, it can be noticed that the frequencies
where the gaps occur, are of the same order of magnitude
as the energy shifts between the ground state Zeeman sub-
levels [19]. Thus it is probable that this behavior originates
in a Raman resonance between Zeeman sub-levels of the
fundamental atomic level.

Except for these gaps, the number of atoms in the
MOT decreases monotonically as

∣
∣Δ‖ − Δ⊥

∣
∣ is increased.

On the blue side, it vanishes when Δ‖ reaches the reso-
nance, as expected when atoms are no more trapped in
the parallel direction. On the red side, we observe differ-
ent behaviors, depending on the laser intensities. More
precisely, the observed behavior depends mainly on I⊥,
and thus we find similar evolutions in traps with I‖ = I⊥
or I‖ �= I⊥. These behaviors are illustrated in Figure 2,
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Fig. 2. Measured number N of atoms in the cloud versus the
detuning Δ‖ for different values of I⊥. The other parameters
of the trap are Δ⊥ = −2Γ , I‖ � 2IS .
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Fig. 3. Measured number N of atoms in the cloud versus Δ‖
for different values of I⊥. Other parameters of the trap are
Δ⊥ = −2Γ , I‖ � 9IS.

where the three curves show the evolution of the num-
ber of atoms on a log scale for three different values of
I⊥. I‖ and Δ⊥ are as in Figure 1. When I⊥ � IS , the
number of atoms decreases progressively until it vanishes
for Δ‖ � −7Γ . When I⊥ � IS , the decreasing is much
faster, with a disappearance of the cloud at Δ‖ � −5Γ .
For intermediate intensities, the curve is the same as that
of Figure 1: the decreasing of the number of atoms is also
fast, and the cloud disappears at Δ‖ � −5Γ . But the
curve exhibits a rebound, which means that the cloud re-
appears until it definitively disappears at Δ‖ � −7Γ . The
number of atoms in the rebound may be consequent: Fig-
ure 3 shows the rebound obtained for I‖ = 9IS , I⊥ = 4IS

and Δ⊥ = −2Γ . N reaches in this case more than 1%
of the main maximum, while Δ‖ = −8Γ . Figure 3 shows
that in this situation again, when I⊥ is increased, the re-
bound disappears and the cloud vanishes for a small de-
tuning. In fact, the behavior shown in Figure 2 appears
to be general, whatever the values of −2Γ ≤ Δ⊥ ≤ −Γ
and IS ≤ I‖ ≤ 12IS . The only explanation of this type
of behavior is that strong couplings between the different
directions arise.
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Fig. 4. Measured ellipticity ε of the atomic cloud versus Δ‖
for different values of I⊥. Other parameters are the same as in
Figure 2: Δ⊥ = −2Γ , I‖ � 2IS.

As expected, the cloud shape depends on the trap
anisotropy. Figure 4 shows the evolution of the elliptic-
ity ε, which does not depend explicitly on N , for the
same parameters as in Figure 2. As for N , the curves ex-
hibit around the single-frequency MOT Δ‖ = Δ⊥ rapid
variations which probably also originate in the Raman
resonance discussed above. Except for that point, the el-
lipticity increases on the blue side of the isotropic trap, be-
fore it decreases rapidly when the resonance is closely ap-
proached. On the red side, the ellipticity decreases slowly,
and then, depending on the value of I⊥, it may increase
again for larger detunings. We can also notice that when
I⊥ is increased, ε globally decreases, as it could be naively
expected: the larger transverse intensity compresses the
cloud in the transverse direction.

In summary of these experimental observations, sev-
eral non trivial behaviors occur in the anisotropic trap.
Strong couplings between the different directions show up.
We were not able to observe instabilities in this configura-
tion, and we attribute it to these couplings. The most in-
triguing behavior is the disappearance and re-appearance
of the cloud when Δ‖ is increased for adequate param-
eters. The role of the intensities appears to be critical:
the relative values of I⊥ and I‖, as well as their values
as compared to IS , determine the evolution of the cloud.
In the next sections, we examine how these behaviors are
reproduced by different models of the MOT.

3 Theoretical results

3.1 Determination of the forces and equilibrium

The usual theoretical description of the MOT is based on
the balance between the different forces experienced by the
atoms in the trap: the trapping force, the shadow effect
and the multiple scattering. Expressions of these forces for
an isotropic trap can be easily found [20].

The trapping force is the sum of the restoring force in-
duced by the magnetic field and the friction force induced

by the light. At equilibrium, the friction force vanishes,
and the trapping force for an anisotropic trap is:

FT = −
⎛

⎝

κxx
κyy
κzz

⎞

⎠, (1)

where (x, y, z) are the coordinates of the atom and κx,y,z

are the spring constants. Let us assume that z is the coil
axis, i.e. the parallel direction. The symmetry properties
of the trap allow us to write κx = κy = κ⊥ and κz = 2κ‖,
where the factor 2 in κz is arbitrarily introduced so that
in the single-frequency trap, κ‖ = κ⊥. We have now:

FT = −
⎛

⎝

κ⊥x
κ⊥y
2κ‖z

⎞

⎠. (2)

The second force is induced by the shadow effect, which
results from the intensity difference between the two
counter-propagating beams, due to the absorption. Along
a given direction, this force is:

FS = −σL

c
(I+ − I−), (3)

where σL is the absorption cross section, and I+ and I−
the local intensities of the two beams propagating in oppo-
site directions. σL depends a priori on the intensities and
the detunings, and thus on the direction: we introduce the
spatial components

(

σL⊥, σL⊥, σL‖
)

following (x, y, z). FS

is obtained by integration of the propagation equations for
the intensities.

The last force originates in the multiple scattering, i.e.
the re-absorption of photons already scattered by a first
atom. This results in the appearance of a repulsive force
between the two atoms, written in reference [20] for an
isotropic trap:

fM =
1

4πr2

σRσLI

c
, (4)

where I is the total intensity, σR the re-absorption cross
section and r the distance between the two atoms. In
our case, the photon scattering by an atom leads in
first approximation to a global isotropic power equal to
2σL‖I‖ + 4σL⊥I⊥. Thus σR does not depend on the di-
rection of the scattered photon. However, σR depends on
the frequency – and thus direction – of the initial photon.
Therefore, although isotropic, different σR are associated
to the σL of each direction, and we obtain:

fM =
1

2πr2

σR‖σL‖I‖ + 2σR⊥σL⊥I⊥
c

. (5)

The collective force FM induced by fM is obtained by
integration, taking into account the atomic distribution.
In reference [20], it is shown that for an isotropic trap,
the atomic density n is constant through the whole cloud.
It is easy to show that it is still the case here: we only
need to write the divergence of the three forces, and n
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is obtained from the equilibrium condition. We obtain a
generalization of the equation (11) in reference [20]:

n =
c
(

κ‖ + κ⊥
)

2σL⊥I⊥ (σR⊥ − σL⊥) + σL‖I‖
(

σR‖ − σL‖
) (6)

n being constant, the integration on the space of the prop-
agation equations, assuming a moderate absorption, gives:

FS = −2n

c

⎛

⎝

σ2
L⊥I⊥x

σ2
L⊥I⊥y

σ2
L‖I‖z

⎞

⎠. (7)

The integration of fM , for any position r and taking into
account the ellipsoidal geometry of the cloud, is quite dif-
ficult. However, symmetry reasons allow us to compute
only the z component of the force for atoms located on
the z-axis:

FM (0, 0, z) =
2n

c

(

2σR⊥σL⊥I⊥ + σR‖σL‖I‖
)

Az (8)

with

A =
(

ε2

ε2 − 1

)

β (9)

β =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − 1√
1 − ε2

ln

∣
∣
∣
∣
∣

1 +
√

1 − ε2

1 −√
1 − ε2

∣
∣
∣
∣
∣

for ε2 < 1

1− 1√
ε2 − 1

arcsin

(√

ε2 − 1
ε2

)

for ε2 > 1.

The coefficient A characterizes the geometry of the cloud,
as it depends only on the ellipticity. We can now write the
condition of equilibrium of the cloud on the z-axis, i.e. the
sum of all forces equals to zero. This condition results in
a condition on the A coefficient:

A =
κ‖

κ⊥ + κ‖

(

1 +
σ2

L‖I‖κ⊥ − 2 σ2
L⊥I⊥κ‖

κ‖
(

2σR⊥ σL⊥I⊥ + σR‖ σL‖I‖
)

)

.

(10)
If we determine the different cross sections and spring
constants, we will be able to evaluate equation (10), and
to compare it to the experimental measurements through
equation (9). This is done in the next section.

3.2 The 1D MOT

To determine σR, σL and κ, we use the usual approxima-
tion, which considers three independent 1D MOTs per-
pendicular to each other. This situation has already been
studied with several levels of approximations [7,11], but
the studies in reference [11] are the only ones, to our
knowledge, which take into account the saturation of the
transition, while the others are always in the limit of small
intensities. In reference [11] a 1D MOT is considered: two
counter-propagating laser beams with opposite circular
polarizations interact with the atoms. The atoms are the
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Fig. 5. Plot of the A coefficient versus Δ‖ for different values
of I⊥. Other parameters are the same as in Figures 2 and 4:
Δ⊥ = −2Γ , I‖ � 2IS . Thick curves correspond to theoretical
values, while thin curves are the experimental records.

simplest ones for which the magneto-optical trapping is
possible: the laser frequency is tuned in the vicinity of a
J = 0 → J = 1 transition. In this model, the expression
of σL is:

σL = σ0
Γ 2

4Δ2 + 2Ω2 + Γ 2
, (11)

where

σ0=
�kLΓc

2IS
=

3λ2

2π

is the absorption cross section at resonance in the weak

saturation regime and Ω =
√

|Ω+|2 + |Ω−|2 is the total
Rabi frequency. The individual Rabi frequencies Ω± are
defined as usual:

Ω2±
Γ 2

=
I±
2IS

. (12)

Different expressions of σR have been obtained in [11],
depending on the relative values of Δ, Ω and Γ . For ex-
ample, in the very common experimental situation where
|Δ| � Ω � Γ , its expression is:

σR =
σ0

8
Ω2

Δ2
. (13)

The last quantity to evaluate is the spring constant. The
expression of FT obtained in reference [11] allows us to
find an expression similar to that of the friction in [21]:

κ = −8μBbkL
ΓΔ

(4Δ2 + 2Ω2 + Γ 2)2

×
[

Ω2 +
16 |Ω+|2 |Ω−|2 Γ 2

16Γ 2Δ2 + (2Γ 2 + Ω2)2

(

1 − Ω2

4Γ 2

)]

.

(14)

We are now able to calculate A both experimentally with
the equation (9), and theoretically with equation (10). Fig-
ure 5 shows as an example the curves obtained for the
same parameters as in Figures 2 and 4. There is no agree-
ment between the experimental curves and the theoretical
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ones. The main discrepancy concerns the evolution of the
A coefficient as I⊥ is changed: experimentally, A decreases
as I⊥ is increased, while it is the contrary in the model.
Another major inconsistency lies in the fact that for large
detunings, the theoretical evolution of all quantities, i.e. A,
κ (Fig. 6, black bold solid line), σL and σR, is monotonic.
Such a monotonic evolution cannot explain the disappear-
ance of the atomic cloud for intermediate values of Δ‖, as
observed in the experiments, neither the re-appearance for
larger values.

Thus it is clear that the present model is not able to
reproduce the experimental observations. Let us remem-
ber that in this model, several known physical phenomena
have been neglected. The question is now which of them
plays finally a role which has been underestimated. The
experimental observations shows that the relative values
of I⊥ and I‖ play a crucial role in the evolution of both
the ellipticity and the number of atoms. As in the present
model, the 3D MOT is approximated to three perpendic-
ular independent 1D MOTs, such effects cannot be found.
Thus it seems logical to enhance the present model to take
into account the cross intensity effects between the parallel
and transverse beams, and in particular the cross satura-
tion effects. In the next section, we modify the standard
model to take into account these effects.

3.3 Introduction of couplings between MOT arms

In the above model, the expression of the parameters σR,
σL and κ results from a 1D approximation. We would like
here to enhance this model to take into account, at least
partly, the effects induced by the couplings of each pair of
beams with its transverse ones. Building a real 3D model
would be rather complex. An intermediate model consists
in still considering three 1D MOTs, but to introduce for
each beam a correction induced by the two other pairs of
beams. However, considering the effects of the transverse
beams implies in our case to study the excitation of the
atomic transition by two quasi-resonant fields with similar
amplitudes. The theoretical description of this problem is
still laborious. However, it can be greatly simplified for the
parallel direction. Indeed, in this case, the two transverse
beams have the same frequency, and we can still simplify
the model if we consider that the four transverse beams are
linearly polarized along z rather than circularly polarized.
In this case, the σ+−σ− longitudinal beams interact with
the |m = ±1〉 levels, while the transverse beams, π polar-
ized, interact only with the |m = 0〉 level. In this case,
the calculations can be done in the same way as in ref-
erence [11]. The resulting expressions are rather complex
(see Appendix) and their expressions are useless to under-
stand the underlying physics. However, we expect that, as
the fundamental level is now coupled to the |m = 0〉 level,
the number of atoms susceptible to absorb the σ+ − σ−
photons is smaller. This should lead to a decreasing of
the absorption cross section, and it is effectively what we
observed.

How the evolution of the spring constant is changed
when the transverse coupling is taken into account is more
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Fig. 6. Plot of the spring constant κ‖ along the coils axis versus
the detuning Δ‖ in the same direction, for different values of
the transverse intensity Ω2

⊥. Other parameters are the same as
in Figure 3: Δ⊥ = −2Γ and Ω2

‖ = 9Γ 2.

difficult to predict intuitively. And indeed, this evolution is
more complex, as shown in Figure 6, where the values of κ‖
are plotted versus Δ‖ for different values of I⊥. When I⊥
is taken into account, the shape of the curve changes rad-
ically. First, because of the coupling, the spring constant
is no more zero when the parallel beam is at resonance,
even for I⊥ small as compared to the saturation intensity
(Fig. 6, bold red dotted line). When I⊥ is increased, κ‖ at
resonance increases until it reaches an asymptotic value.
On the contrary, at larger detunings, its value decreases.
As long as it remains positive, the atoms are trapped
whatever Δ‖. Thus when the detuning Δ‖ is increased, the
cloud population decreases monotonically until it vanishes
for large detuning. But when I⊥ is further increased (red
dashed line), κ‖ becomes negative for intermediate values
of Δ‖, and becomes positive again for large detuning. In
the interval where κ‖ is negative, the atoms are repelled
from the trap, and thus for these intermediate detunings,
the atomic cloud disappears, but re-appears at large de-
tunings. Finally, for even larger I⊥ (blue dotted dashed
line), κ‖ becomes negative for intermediate values of Δ‖,
and remains negative for large detunings: the cloud disap-
pears for rather small Δ‖. This behavior is rather consis-
tent with the experimental observations, in particular the
disappearance and re-appearance of the cloud when Δ‖
is increased for adequate parameters and thus taking into
account the cross saturation effects appears to be neces-
sary to describe the behavior of an anisotropic trap.

Note also in Figure 6, that the value of the spring con-
stant is also changed for the balanced single-frequency
trap: it is for example decreased by a factor 2.6 for
Δ‖ = −2Γ and Ω2

‖ = Ω2
⊥ = 9Γ 2. Moreover, as we noticed

above, these changes occur even for small intensities. This
shows that although usually neglected, the transverse cou-
plings between the trap arms could change significantly
the trap characteristics. Thus a model neglecting these
couplings give quantitatively correct results only at very
small intensities as compared to the saturation intensities.
In the vast majority of the experiments, it is not the case.

http://www.epj.org
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Fig. 7. Plot of the A coefficient versus the detuning Δ‖ for
different values of I⊥. Other parameters are the same as in
Figure 5: Δ⊥ = −2Γ , I‖ � 2IS . Thick curves correspond to
theoretical values when cross saturation is taken into account,
while thin curves are the experimental records.

We also noticed in Section 3.1 that the standard model
was unable to reproduce the global evolution of the ellip-
ticities when the transverse intensities are changed. To
check that point, we plot the same curves as in Figure 5,
but for the cross saturation model (Fig. 7). The global
evolution of the ellipticities, both theoretical and exper-
imental, are now qualitatively consistent. In particular,
when I⊥ increases, A decreases in both cases.

4 Conclusion

In this paper, we study the behavior of a dual frequency
anisotropic MOT. Experimental measurements show sev-
eral counter-intuitive behaviors, in particular an interval
of detunings where atoms are no more trapped, while they
are trapped for smaller and larger detunings. We show
that the usual model, which neglects the cross satura-
tion effects, is unable to explain this behavior. We build a
model taking into account these cross saturation effects,
and show that this model leads to behaviors similar to
the experimental ones. The agreement between the exper-
iments and the model is only qualitative. It is not sur-
prising, as numerous approximations remain in the new
model. However, it shows that cross saturation effects play
a key role in this system.

We also show that even in the traditional balanced
single-frequency trap, the couplings between the different
arms of the trap change significantly the trap characteris-
tics. As a consequence, these effects should be taken into
account when a detail understanding is required.

The present study was also motivated by the hope to
use cold atoms in a MOT as a model system for some
types of plasmas. To reach this status, the experimental
and theoretical cloud of cold atoms need to correspond.
This is not the case, becaure presently, we use essentially
1D models and 3D experiments. Anisotropic traps could
be a solution to have 1D instabilities in 3D traps, but the
coupling between the different directions of the trap makes

|f〉

|m = −1〉
|m = +1〉

Δ‖+Δ‖−

σ+σ−

Ω‖− Ω‖+

δ
δJ = 1

J = 0

|m = 0〉
Δ⊥

Ω⊥

π

Fig. A.1. Scheme of the levels of the considered system.

it difficult to separate the dynamics of the MOT along
the different directions: if the trap exhibits instabilities in
one direction, it will also exhibits instabilities in the other
ones. As reducing the dimensionality of the experimental
systems seems to be compromise, it appears now necessary
to develop a full 3D dynamical model of the MOT.

Appendix:

The aim of this Appendix is to describe in detail the model
we used to take into account the cross saturation effects,
the results of which are described in the previous sections.
We consider that the four transverse beams are linearly
polarized along z rather than circularly polarized. In this
case, the σ+ − σ− longitudinal beams interact with the
|m = ±1〉 levels, while the transverse beams, π polarized,
interact only with the |m = 0〉 state (Fig. A.1).

In the natural basis {|f〉 , |+〉 , |0〉 , |−〉}, the
Hamiltonian is:

H = �

⎛

⎜
⎜
⎜
⎝

0 Ω‖+/2 Ω⊥/2 Ω‖−/2

Ω∗
‖+/2 −Δ‖ − δ 0 0

Ω∗
⊥/2 0 −Δ⊥ 0

Ω∗
‖− 0 0 −Δ‖ + δ

⎞

⎟
⎟
⎟
⎠

, (A.1)

where Ω‖± are the individual Rabi frequency along the
parallel direction, defined as in equation (12). The master
equation of this system is:

dσ

dt
=

1
i�

[H, σ] +
dσ

dt

∣
∣
∣
∣
relax

, (A.2)

where σ is the matrix density. The second term in (A.2)
stands for the variations induced by the relaxations.

The two first terms of the perturbation series are:

dσ(0)

dt
=

1
i�

[

H(0), σ(0)
]

+
dσ(0)

dt

∣
∣
∣
∣
relax

(A.3)

dσ(1)

dt
=

1
i�

([

H(1), σ(0)
]

+
[

H(0), σ(1)
])

+
dσ(1)

dt

∣
∣
∣
∣
relax

.

(A.4)
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As in reference [11], and for the same reasons, we introduce
the coupled |C〉 and non-coupled |N〉 states:

|C〉 =
Ω‖+ |+〉 + Ω‖− |−〉

Ω‖
(A.5)

|N〉 =
Ω∗

‖− |+〉 − Ω∗
‖+ |−〉

Ω‖
(A.6)

and we write the zeroth and first orders of the Hamiltonian
in the new basis {|f〉 , |C〉 , |0〉 , |N〉}:

H(0) = �

⎛

⎜
⎜
⎜
⎜
⎝

0 Ω‖/2 Ω⊥/2 0

Ω∗
‖/2 −Δ‖ 0 0

Ω∗
⊥/2 0 −Δ⊥ 0

0 0 0 −Δ‖

⎞

⎟
⎟
⎟
⎟
⎠

(A.7)

H(1) =
�δ

Ω2
‖

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 |Ω−|2 − |Ω+|2 0 2Ω‖+Ω‖−

0 0 0 0

0 2Ω∗
‖+Ω∗

‖− 0 |Ω+|2 − |Ω−|2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(A.8)

with Ω‖ =
√|Ω‖+|2 + |Ω‖−|2.

We still need to write the relaxation terms. They are,
in the natural basis:

dσ(n)

dt

∣
∣
∣
∣
relax

=−Γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−σ
(n)
++ − σ

(n)
−− − σ

(n)
00 σ

(n)
f+ σ

(n)
f0

σ
(n)
f−
2

σ
(n)
+f σ

(n)
++ σ

(n)
+0

σ
(n)
+−
2

σ
(n)
0f σ

(n)
0+ σ

(n)
00

σ
(n)
0−
2

σ
(n)
−f

2
σ

(n)
−+

2
σ

(n)
−0

2
σ

(n)
−−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(A.9)
At this point, the resolution of the equations is straightfor-
ward but leads to heavy expressions. It is useless to write

them here, as they are too much complex to be useful in
the understanding the underlying physics.
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