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Instabilities and chaos in an infrared laser with saturable
absorber: experiments and vibrorotational model
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The instabilities and chaos in a CO2 laser containing SF6 and 15NH 3 absorbers have been studied as a function of the

laser-control parameters. By making use of a phase-portrait analysis, the instabilities have been classified through

their orbits in the phase space around the laser-with-saturable-absorber (LSA) fixed points. A chaotic regime,
reached through a sequence of period-doubling bifurcations, has been observed for an instability of limit cycles

around one fixed point. The transition between different instability operations presents an intermediate regime,
which we have defined as the hesitation regime and have characterized through the fluctuations in the return times.

The observed phenomena have been reproduced within a model, including the rotational-vibrational structure of
the amplifier and absorber media. The numerical analysis has shown that the LSA time evolution, as described

through homoclinic orbits in the LSA phase space, depends on the relative attractions of the saddle point and the

saddle focus fixed points.

1. INTRODUCTION

The observation of instabilities and chaos in nonlinear-opti-
cal systems is relevant for the operation of those systems and

for the comprehension of quantum optics.' The optical
nonlinearity of a laser with an intracavity saturable absorber

(LSA) is associated with an absorber that operates in a
regime of large saturation. The observation of instabilities

as periodic modulations in the LSA output power goes back
to the early operation of CO2 laser in the aim of producing
large pulses in the output power. 2 A fairly precise descrip-

tion of the LSA operation for CO2 lasers containing intra-
cavity molecular absorbers was given by Burak et al.3 and by
Dupr6 et al.,4 with the rotational structure of the amplifier
and absorber molecular media properly included in the rate
equations of the so-called four-level model. By making use

of the detailed semiclassical and quantized analyses of the

LSA regimes by Lugiato et al.,5 the threshold conditions for

the cw and unstable regimes were determined in the frame of

the four-level model.6 Later, several authors investigated
the LSA operation both experimentally and theoretically.
Arimondo et al.7 reported the observation of a LSA unstable

regime with a sinusoidally modulated laser output power.

Velarde and co-workers8 and Mandel and co-workers9 ana-
lyzed numerically in a few cases the solution of the LSA

Maxwell-Bloch or rate equations in order to investigate out-
put pulses and transitions between different regimes. The
fluctuations in the laser intensity and return times in the
pulsed regime have been investigated.' 0 "11 A different LSA
model has been introduced by Tachikawa et al.12 to describe
the pumping process from the ground state of the CO2 am-
plifier, producing a better description of the LSA pulses in
the unstable regime. Finally, a chaotic regime in the LSA
operation, theoretically predicted for unrealistic laser pa-
rameters, was recently observed experimentally.1 3-15 The
characterization of the LSA laser pulses in the unstable

regimes through orbits in the phase space corresponding to
homoclinic orbits, homoclinic cycles, and limit cycles has

been discussed in Ref. 14. From the mathematical point of
view the laser pulses in the homoclinic-orbit regime corre-
spond to solutions emerging from a homoclinic solution
through a so-called infinite-period bifurcation. 1 6 1 7

CO2 lasers belong to the so-called class-B lasers, for which
an adiabatic elimination of the polarization may be per-
formed and the laser operation is governed by two equations
only. In fact, the unstable and chaotic features observed in
the CO 2 LSA may be interpreted for the most part on the
basis of the rate equations. Chaos has been observed in CO2

lasers through an external manipulation of the laser dynam-
ics, for instance, through laser modulation, injection of an
external laser radiation, and feedback of the output intensi-
ty on the loss rate. Intrinsic chaos in CO2 lasers has been
observed by making use of a bidirectional ring cavity, i.e., in
a system in which backward and forward field waves act as
independent variables. 1 Chaos in the C0 2 LSA represents a

new, important example of observation in intrinsic systems
for which independent variables are associated with intrin-
sic quantities only.

The LSA system behaves differently from other autono-
mous or nonautonomous laser systems. Qualitatively the
LSA phenomena are described through two rate equations
for the amplifier and absorber media and an equation for the
time evolution of the laser intensity. From that description
the two fixed points in the phase space are determined, and
the overall behavior of the LSA in both the unstable and the
chaotic regimes may be interpreted on the basis of phase-
space orbits around the two fixed points. However, the full
complexity of the LSA regime is obtained when a more
accurate modeling of the amplifier and absorber responses is
introduced. In fact, the LSA systems encountered in the
infrared experiments are described through a system with a
larger number of equations in order to include the influence
of the rotational coupling and the pumping from the ground
state. This larger system leads to some new features in the

LSA behavior. For instance, LSA systems show chaotic
behavior through a sequence of period-doubling bifurca-
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tions. This chaotic behavior is related to the presence of a
pumping mechanism in the amplifier medium. An impor-
tant factor in LSA chaotic behavior is the occurrence, under
appropriate conditions, of a Shil'nikov-type chaos, i.e., a
motion characterized by homoclinic orbits in the phase
space with large fluctuations in the return time associated
with the sensitivity of the trajectory on the initial approach
to the unstable point.'3 Such behavior, observed in a non-
autonomous CO2 system, 18"19 is characterized by a time evo-
lution with pulses of constant amplitude but presenting fluc-
tuations in their period. These chaotic regime results are
quite different from those observed with period-doubling
bifurcations. The LSA dynamics presents a saddle focus
point with properties corresponding to those required for a
Shil'nikov-type chaos. Our analysis of the LSA equation
system, or more precisely the analysis of Shil'nikov's eigen-
values, shows that in correspondence to the experimental
parameters, for the orbits diverging out from the second
unstable point, the presence of a fixed point that is strongly
attractive inhibits the chance of realizing a Shil'nikov chaos.

The aim of the present paper is twofold: to present a
detailed experimental study of the LSA unstable and chaot-
ic regimes and to perform a precise comparison between the
experiment and the theoretical predictions when LSA is
described through a model that includes the pumping from
the ground state in the amplifiers2 and the four-level rotovi-
brational structure in the absorber.6'2 0 In effect, on the
basis of the model introduced in Ref. 12, Tachikawa et al.

2
1

have shown that the laser pulses in the unstable regime and
the presence of the chaotic regime in the LSA operation are
reproduced by using what they define as reasonable values
for the laser parameters. Those parameters do not include
the rotational structure in the low-pressure absorber and
therefore are not appropriate for describing the LSA opera-
tion in the time-independent regimes, which are heavily
affected by the rotational structure through the saturation
intensity.20 In the present paper we analyze how the ab-
sorber rotational coupling, which we have introduced into
the LSA model, influences the chaotic regime, the instability
windows, and the transitions between the different regimes.

This paper is organized as follows. In Section 2 a brief
presentation of the laser and detection systems and a discus-
sion of the LSA parameters are presented. In Section 3 the
experimental results are reported. Modulated and chaotic
output powers corresponding to different evolutions of the
system inside the phase space are discussed, with state dia-
grams showing the different instability regimes as a function
of the control parameters. In the LSA we have observed the
presence of hesitations, i.e., the transitions between differ-
ent regimes of instabilities present large fluctuations. We
have explored the LSA hesitations through a return-time
map and have characterized the orbit in the phase space by
measuring the laser residence time around the fixed points.

The theoretical analysis, presented in Section 4, is based
on the five-equation LSA model, including the rotational
and vibrational complexities of the amplifier and absorber.
We have explored numerically the solution of the LSA equa-
tions for parameters reproducing closely the static response
of our system. The main results presented are the state
diagrams of the LSA unstable and chaotic regimes and the
characterization of the unstable points through their eigen-
values. Orbits in the phase space are used to characterize

the LSA evolution and to introduce a classification of the
different instability regimes.

Recently Dangoisse and Glorieux2 2 analyzed the LSA cha-
otic regime within an ad hoc model for the amplifier and
absorber media. That model may be derived from the more
general one presented in this paper if an adiabatic elimina-
tion is applied to the absorber variables. It is remarkable
that the oversimplified model of Dangoisse and Glorieux
reproduces the main features of the chaotic dynamics, prov-
ing that the observed chaotic structures are entirely con-
nected to the amplifier dynamics. In another recent analy-
sis, Tanii et al.2 3 examined the eigenvalues of the LSA sys-
tem and their evolution as a function of the control
parameters, with an aim similar to that of this paper, relat-
ing the LSA global behavior to the local eigenvalues.

2. EXPERIMENT

The LSA system and the data analysis were described previ-
ously.2 0 24 It is relevant to the present description that the
LSA system is characterized through the following parame-
ters: A, defined as the ratio between the unsaturated ampli-
fier gain and the cavity losses, A = 1 determining the laser
threshold without the intracavity absorber; A, defined as the
ratio between the unsaturated absorption coefficient and
the cavity losses; and a, defined as the ratio of the amplifier
and absorber saturation intensities. In the dynamic regime,
as well as in the static one, the laser evolution was monitored
as a function of the pumping A parameter and the laser-
frequency detuning A off the center frequency of the ampli-
fier gain. However, the laser frequency affects all the A, A,
and a parameters through the amplifier and absorber detun-
ings.

In the comparison between simulation and experimental
results a precise knowledge of the laser parameters is re-
quired. The determination of the LSA parameters was
based on (i) previous measurements, (ii) the comparison
performed in Ref. 20 for the LSA static response, and (iii)
the absorption coefficient and relaxation rates reported in
the literature for the absorbing gases.

Our experimental observations were made by using SF6
and 5NH 3 gases as saturable absorbers; their parameters are
discussed in detail in Ref. 20. 5NH3 presents the vibration-
al aR(2, 0) transition in coincidence with the OR(42) CO2
laser line. SF6 absorbs CO2 laser radiation on several lines
of the 10P branch, and in effect unstable and chaotic regimes
were observed on nearly every laser line between P(14) and
P(32). Bistable operations between the off, cw, unstable,
and chaotic regimes have been observed on several lines.
We report here results for the P(20), P(24), P(30), and P(32)
lines.

For the laser-frequency detuning, the tuning center of the
amplifier is easily determined. On the contrary, for the SF6
experiments the position of the absorber line center cannot
be determined precisely because for a few lines, for instance,
10P(16), the SF6 absorption is composed of several lines
spread around the CO2 laser line center.25 For other lines,
for instance, 1OP(30) and 1OP(32), measurements of the fre-
quency positions for the SF6 absorption lines are not avail-
able.

A main problem encountered in the comparison between
the theoretical analysis and the experimental results is that
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most LSA experiments are performed in the regime of inho-

mogeneous broadening of the absorber transition line be-

cause a low-pressure absorber is introduced inside the laser

cavity. Several observations were made by adding to the

absorber a buffer gas, either He or CF 3Br, at a pressure of a

few Torr in such a way that the results correspond to a

regime with a homogeneously broadened absorber line.

3. RESULTS

A. Pulses and Phase Portraits
In analyzing the experimental observations of the unstable
regimes in the LSA systems, it turns out that a large variety

of regimes is obtained. To get some physics from the obser-

vations reported in this paper, as well as from the work

reported previously in the literature, a sort of classification

of the regimes is required. This classification is based on

the results of our LSA theoretical analysis.
The overall LSA behavior is strongly determined by the

presence of two fixed points in the phase space of the LSA

variables. For the laser intensity, which is the variable

usually observed in the experiment, these fixed points, de-
fined as Io and I+, are characterized, respectively, by a zero

laser intensity and a laser intensity different from zero. The

time evolution of the LSA is represented by an orbit in the

phase space of the LSA variables winding around the two

fixed points. Thus the classification of the LSA instabilities
that we have introduced in Ref. 14 is based on the phase-
space regions explored by the orbit.

The simplest and most common time-dependent regime
for the LSA output power is composed of narrow spikes

repeating regularly at a period lT with constant amplitude.

An example of that regime, which will be denoted as P(O), is

shown in Fig. 1(a). The LSA system remains for a large part

of the time T, in a state corresponding to a zero laser intensi-

ty and for a narrow fraction of the period in states with

output intensity different from zero. This P(O) regime may
be described in the phase space through a quasi-homoclinic
orbit, leaving the fixed point Io and reinjected into that
point. If we limit our observation to the laser-intensity
variable, the LSA system appears to evolve out of and into
the zero-intensity state. On the contrary, the LSA is de-
scribed through a full set of variables (at least four variables

in the hypothesis of the most convenient adiabatic elimina-
tion), and even if the laser intensity has a zero value, we

cannot determine from our experimental observations
whether the LSA system remains near the Io point or simply
in a phase-space region with zero laser intensity. Notice

that if Io is a fixed point, a finite period phase-space trajec-

tory cannot pass through that point, and a true homoclinic
orbit occurs only at the bifurcation value for the instability
regime,26 i.e., at the so-called infinite-period bifurcation."'

If at fixed absorber parameters the pump parameter is
increased, a region of unstable operation is realized when the

single laser pulse on the laser output of Fig. 1 is followed by

other pulses with smaller amplitudes. A typical result of

this operation regime is presented in Fig. 2(a). To analyze

the phase-space evolution over the LSA pulse, we have made

use of a [I(t), I(t + r)] phase-portrait representation, as
shown in Fig. 2(b). It appears that the laser pulse corre-

sponds to a trajectory evolving out of the I0 saddle point and
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Fig. 1. (a) LSA output in a type-I P(°0 instability corresponding to a
quasi-homoclinic orbit in the phase space. (b) LSA output power in
a type-I p(8) instability corresponding to a quasi-homoclinic cycle in
the phase space. Both instabilities were observed on the 1OR(24)
CO2 amplifier at 25-mTorr SF6 pressure with (a) A = 1.03 and (b) A
= 1.3.
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Fig. 2. (a) Laser pulse in a P(3) quasi-homoclinic instability revolv-
ing three times, after the initial main peak, out of Io and around I+,
as shown in the I(t + T) versus I(t) phase portrait presented in (b):
1OP(32) CO2 laser line at A = 1.05, SF6:He in a 1:10 ratio, 200-mTorr
total pressure, and T = 0.6 ,isec.

orbiting around the saddle focus point I+ before returning to
the Io point. We have denoted the phase-space orbits in this
regime as p(n), according to the number n of small-amplitude
oscillations that the trajectory completes in the phase space
around the saddle focus in between two successive long resi-
dences near the Io point. A similar definition for a similar
regime has been introduced by Argoul et al.2

7 in order to
characterize the homoclinic chaos in the Belousov-Zhabo-
tinskii reaction. The p(n) regimes correspond to quasi-ho-

moclinic orbits leaving the Io point and reinjected into that
point.

A different unstable LSA regime presents output pulses
having high-frequency oscillations at the end of the pulse, as
shown in Figs. 1(b) and 3(a). A phase portrait for those
pulses is shown in Fig. 3(b). This regime, denoted as p(n), is

characterized by heteroclinic connections or homoclinic cy-
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Fig. 3. As in Fig. 2 for a laser pulse in a P(5) instability correspond-
ing to a quasi-heteroclinic connection revolving out of 10 into I+ and
later out of I+ through five orbits: 10P(20) CO2 line at A = 1.3, 20-
mTorr SF6 absorber pressure, and T = 1 sec.
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Because the distinction between p(n) and p(n) regimes ap-
pears as a fine-grain classification in respect to other LSA
classification and a continuous transition occurs between
them, the symbol p(n) will be used in what follows to denote
all the intermediate regimes unless a specific reference is
made to the occurrence of heteroclinic connections.

The LSA evolution in these instability regimes appears
clearly in the three-dimensional representation of Fig. 5, as a
function of the laser intensity I, the amplifier variable D,
defined as the difference between the resonant vibrational-
level populations, and the absorber variable D, defined as
the difference between the resonant rotational-level popula-
tions. Figure 5 was obtained from the numerical simulation
of the LSA equations, and it will be discussed in Section 4.
It is shown here to illustrate the support provided by the
numerical simulation in the analysis and classification of the
LSA pulses. This orbit, to be classified as p(4), approaches
closely the + point, as compared with other p(n) instabilities
orbiting far from +. A phase-space trajectory reaches the
I+ point only in a homoclinic orbit or a heteroclinic connec-
tion at an infinite period bifurcation. The trajectory of Fig.
5 is distant from the Io point, with coordinates (Do, Do, 0),
but the I = 1 a plane is an invariant surface from which the
orbits arriving closely are repulsed.

All the p(n) regimes are characterized by the laser output
power remaining for a large part of the T period in a state of
zero laser intensity (see Fig. 1). Those pulses correspond to
the regime well known as passive Q switching from the early
days of CO2 LSA operation 2 and were numerically analyzed
by several authors (for instance, see Refs. 3 and 4). To
separate this regime from the regime to be presented in
Subsection 3.B, we denote it generically as a type-I instabil-
ity. 14

The laser output power may present another pulsed re-
gime, which will be denoted type-II instability,' 4 in which
the laser intensity remains for most of the period around the
intensity corresponding to the I+ point. Thus small-ampli-
tude oscillations near the I+ intensity may appear on the

(b)

I(t)
Fig. 4. As in Fig. 2 for a laser pulse in type-I instability correspond-
ing to a regime intermediate between the homoclinic orbit and the
heteroclinic connection: 1P(30) CO2 line at A =1.1, 40-mTorr SF6
pressure, and T = 0.6 usec.

cles,2 6 in which the phase-space orbit leaving the area of Io at
first converges toward the I+ saddle focus, emerges from this
point with a spiral-type motion, and finally is reinjected into
the Io point.

If Figs. 2(a) and 3(a) represent two well-defined LSA re-
gimes, then, by varying the laser-control parameters, laser
pulses corresponding to intermediate regimes may be ob-
tained; an example is shown in Fig. 4(a), and the phase
portrait is shown in Fig. 4(b). In that case the phase-space
orbit converges to the + saddle focus and performs some
small oscillations nar but never reaches it. That LSA oper-
ation cannot be properly classified as a quasi-heteroclinic
connection p(n) regime and will still be denoted as p(n).

I

p(4)

1), /21 ii-

I)

Fig. 5. Orbit in the three-dimensional phase space (D, D, I) as
obtained from the numerical solution of the LSA equations. LSA
parameters are as listed in Table 1 at B = 25 and P = 1.74 X 10-5.
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Under some LSA operating conditions, the pulsed laser
output shows a stable modulation of the self-pulsing enve-

lope. A typical result for the period-T regime is shown in

Fig. 7, and similar results have been observed for other LSA

period-T operations. We have carefully checked that the

low-frequency oscillations did not originate from fluctua-
tions in the laser or detector power supplies. Furthermore,
we noticed that the envelope modulation frequency varies
regularly with pump parameter A. Thus the observed mod-
ulation envelope behavior may be interpreted as a breathing

behavior, with the time scale of the breathing pattern 10-20
times longer than that of the self-pulsing oscillations. This
slow periodic modulation of the period-T amplitude when
represented in the phase space displays the characteristic
behavior of a toroidal attraction around the I+ saddle focus,
as discussed in Ref. 27.

(c)

(d)

TIME (sec)

Fig. 6. (a) LSA output power in a type-II instability defined as a

period T. (b) A bifurcation to a period 2T instability has been

obtained. (c) A chaotic regime is observed, whereas in (d) a period

doubling on p(l) is shown: 1P(32) amplifier, 70-mTorr SF6 absorb-

er, and 900-mTorr He buffer gas were used at (a) A = 1.12 and A

reduced by 2% passing to (c), with laser frequency at center of the

cavity mode. In (d) A is as in (b), and the laser frequency is detuned

by 10 MHz. (The total phase diagram is given in Fig. 9.)

: I I N

0.2 0.4 0.6 0.8 1.0

TIME (msec)
Fig. 7. Breathing oscillations observed on the LSA pulsed output

power in a type-II instability: 1P(32) CO2 laser operation and
absorber SF6 at 50 mTorr with 1-Torr He buffer gas.

LSA output power to be sinusoidal, as reported in Refs. 7

and 23, or with other shapes, as reported in Ref. 14. Howev-

er, we are interested here mainly in pulses with large ampli-

tude, as shown in Fig. 6(a). Notice that during the pulse the

laser intensity passes through the zero-intensity value but

only for a small fraction of the Tp period, and that makes the

difference between the type-I and type-II instabilities. The

regime with large-amplitude type-II pulses [Fig. 6(a)I will be

denoted in what follows as the period-T regime. Phase-

space orbits for type-II instabilities are presented by limit

cycles around the saddle focus I+, smaller or larger ampli-
tudes depending on the specific pulses. Comparing Figs. 3

and 6, we notice that the period of the pulses in the T regime
is close to the period of the oscillations spiraling out of the I+
saddle focus. In fact, in both cases the period is approxi-
mately equal to the imaginary parts of the complex eigenval-
ues at the I+ point.

B. Chaos
Chaotic regimes were observed in our LSA system and were

reached through a Feigenbaum scenario with a sequence of
period doublings on type-II T instabilities. Experimental
observations corresponding to that scenario are given in Fig.
6. A period-T regime shows a period-doubling bifurcation

to an instability of period 2T. Period-doubling bifurcations
to regimes 4T and 8T have also been observed. Finally, a

chaotic regime is reached. The data of Fig. 6 were obtained

for a variation of the pump parameter A by 2% only.

In type-I instability a period-doubling bifurcation has
been observed on the p(l) and p(2) regimes. An example of

period doubling on the p(l), which will be denoted as 2P(l), is

represented in Fig. 6(d). However, no scenario to a chaotic

regime has been observed within the type-I regime instabil-
ity in our experiments on SF6 or NH3. In fact, in all the

observed cases a transition to other regimes, typically type-
II instabilities, has been obtained. On the contrary, the
experimental observations of Ref. 13 with a CH3I absorber

have reported a route to chaos through period-doubling bi-
furcations on the p(n) regime. Thus in our experimental
conditions such a route to chaos, if present, should occur
within a narrow range of control parameters.

C. State Diagrams
We have investigated the occurrence of unstable and chaotic
regimes in the LSA as a function of the laser-control parame-
ters when different laser lines and absorbers were used. The
convenient and most accessible control parameters are the A
pump parameter and the amplifier detuning A, controlled
through the cavity length. Notice that the cavity length
modifies the amplifier detuning and the absorber frequency
detuning at the same time. The evolution of the LSA re-
gimes may be presented in a two-dimensional state diagram,

with the pump and detuning parameters as coordinates.
Two examples of experimentally determined state diagrams
are shown in Figs. 8 and 9. Notice that the diagrams have

been constructed by scanning both control parameters inde-
pendently. In the figures we have used the pump parameter
Ao = A(A = 0) as obtained at the center of the cavity detun-

ing. The laser output power depends on Ao and the cavity
detuning A.14 Three types of evolution have been observed

on the LSA operation as a function of one control parameter,

for instance, increasing the discharge current at fixed laser

frequency:

I-
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0
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DETUNING (MHz)
Fig. 8. LSA state diagram on the plane of the control parameters
(AO, A\) for operation on the 10P(30) CO2 line and 45-mTorr SF6pressure. In the hatched zones on the left- and right-hand sides of
the diagram the laser is either multimode or on a different mode.
An integer n denotes a region corresponding to a p(n) regime. The
heavy line denotes the upper border of the type-I region. The
regions near the cw operation correspond to T and 2T type-II unsta-
ble regimes. This diagram illustrates the bistability between type-I
[here (8) to P(l5)] and type-II unstable regimes (here T and 2T).

-50 -25 0 25 50

DETUNING (MHz)
Fig. 9. LSA state diagram as in Fig. 8 for operation on 1P(32) line
with 70-mTorr SF6 absorber and 900-mTorr He buffer gas. The
window in the lower right-hand corner is an enlargement of the
region surrounded by the box in the center of the diagram. In this
diagram the system presents within the region of type-II instabil-
ities a Feigenbaum scenario with period-doubling cascades culmi-
nating in chaos. Outside that region the system presents a type-I
passive Q-switching regime.

(1) Evolution from the off regime to a p(n) regime, first at
small n numbers and later at large n numbers, with an
evolution finally ending in a cw regime. Depending on the
operating conditions, quasi-heteroclinic p(n) cycles may ap-
pear in the evolution toward the cw regime, but, as pointed
out above, at large n values the distinction between the p(n)
and p(n) regimes is minor. This evolution has been observed
on all the laser lines between P(22) and P(28) with a low-
pressure SF6 absorber.

(2) Evolution from the off regime toward the p(n) regime

and later at small n values, typically n 5, with evolution
into a chaotic regime associated with a supercritical type-II
instability bifurcation series. When the control parameter
is increased out of the chaotic regime, a type-II instability
regime is reached through an inverse Feigenbaum sequence
of period doublings, and finally the cw regime is obtained.
This evolution was observed, for instance, on the 1P(32)
laser line when a low-pressure SF 6 absorber and He buffer
gas at a pressure ten times larger were used. The phase
diagram of Fig. 9 presents clearly this possibility of LSA
evolution when vertical lines are explored. Figure 9 shows
regions with pMi) and p( 2

) regimes. Furthermore, the insert
of Fig. 9 shows a small region of type-II period-doubling
instabilities, identified as 21 in the figure.

(3) Evolution from the off regime into the p(n) unstable
regime up to orbits with large n number (n 15 in Fig. 8),
without reaching a chaotic regime. On the contrary, the
region of type-II instabilities is reached through a bistability
between the type-I and type-II instabilities. The state dia-
gram of Fig. 8 shows this overall evolution for 10P(32) CO2
laser operation when SF6 at 45-mTorr pressure was used.
The bistability region is delimited above by the heavy line
and below by the border of the period-doubling region.

Notice that the frequency detuning marked on the x axes
of the figures represents the shift in the laser frequency
produced by the modification in the cavity length in the
absence of intracavity absorber. From the overall state dia-
grams of Figs. 8 and 9, we see that a frequency shift of the
laser mode is produced by the absorber through a frequency
pulling. Furthermore, we notice that the borderlines be-
tween the different regions of LSA operation depend on the
laser alignment, and changes as great as 20% of the A and A
values may be obtained by a slightly different laser align-
ment.

A main results of the state-diagram investigations is the
observation of different cases of bistability in the LSA oper-
ation. The simplest and most obvious bistability occurs for
LSA operation between cw and laser-off regimes. That ap-
pears, for instance, for 1P(16) CO2 operation and a pure
low-pressure SF6 absorber at low-frequency detunings.
When instabilities arise in the laser operation, bistabilities
between type-I instability and the cw regime may appear, as
observed in the operation with the 10P(20) line and low-
pressure SF6 absorber. On the contrary, for the 10P(16) line
a bistability between type-II instability and the off regime
has been observed. These observations indicate that in the
LSA phase space an I+ stable point and a stable type-I orbit
coexist with an Io stable point and a stable type-II orbit. To
complete the list, bistability occurs between an I+ stable
point and a type-II orbit, corresponding to the coexistence of
a limit cycle around the I+ point independent of the stable I+
point itself. We have not obtained this bistable regime in
our state-diagram reconstructions, but we have clear experi-
mental evidence of it. A last observed bistability case is
between type-I and type-II instabilities, and this case is
illustrated in Fig. 8. In conclusion, only one case has not
been obtained-bistability between Io and the type-I insta-
bility.

In passing between the various regimes, soft or hard tran-
sitions have been observed. Soft transitions are observed in
the passage between the type-I unstable regime and the off
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or cw regimes, i.e., the Io or I+ stable points. In these soft

transitions the period of the type-I instability diverges, cor-
responding to orbits emerging from a homoclinic solution.

A hard transition is associated with the bistability between
the off regime and cw regimes. Also, the transition between

the off regime and the type-II instability appears to be asso-
ciated with a bistability and thus to hard transition. The
transition between the cw regime and the type-II instability
appears to be either a soft or a hard transition, depending on

the experimental conditions, proving that a limit cycle near
I+ may exist independently of the stable I+ point leading to
the cw regime. Similar behavior occurs for the transition
between type-I and type-II instabilities, with soft transitions
observed when the p(n) regimes at small n values are in-

volved and hard transitions occurring for large n values.

This proves that the two regimes are not similar even if the

numerical analysis shows that it is possible to realize a con-

tinuous transformation of the orbits of one type into the
orbits of another type.

D. Return Times and Hesitations
To characterize more precisely the different unstable or
chaotic regimes of the LSA operation, we have investigated

return times as a function of the laser-control parameters.
In fact, return maps of the intensity and iteration map of the
return time represent a standard approach to differentiating
the regimes and also to distinguishing between an approach

to the chaos through period-doubling bifurcations or Shil'ni-
kov-type chaos.18 In the LSA operation, with orbits visiting

the Io and I+ point, we have measured the time spent during
the evolution in the phase space around each of these points.

On the typical heteroclinic connection shown in Fig. 1(b) we

have indicated the measured To and T+ times. To repre-
sents the time spent during the LSA operation in the region
of zero intensity. T+ defines the time spent during the orbit
around the I+ point: it also includes the time spent along a
large orbit in the phase space, but this time is a small frac-

tion of the total T+ time.
Figures 10 and 11 show experimental results for averaged

(To) and (T+) times as a function of the amplifier pump
parameter for different conditions of LSA operation. Fig-

ure 10, for the operation on the 1OR(42) laser line with a NH 3

absorber, refers to a heteroclinic instability at large n num-
ber. Figure 11, for the 1OP(30) operation with a SF6 absorb-

er, corresponds to p(n) homoclinic instabilities at low n num-
bers. In both cases (To) decreases with increasing pump

parameter, and, in fact, (To) diverges at the transition be-
tween the off (or cw) and pulsed operations, corresponding
to a periodic solution emerging from a homoclinic solution

(also called an infinite-period bifurcationl6"7 2 6 ). On the

contrary, (T+) increases with the pump parameter, and, in
fact, (T+) diverges in passing from the pulsed to the cw

regime. This behavior corresponds again to an infinite-
period bifurcation, with a periodic solution emerging from a

heteroclinic solution. The transition between different ho-
moclinic instabilities in Fig. 11 takes place through a discon-

tinuity in the T+ time. An n-order homoclinic trajectory
includes n windings around the I+ point, and the T+ time
changes by a revolution around 1+ whenever the n index is

modifed by one unit. That dependence of T+ time appears

at the intermediate pump amplifier parameter of Fig. 11(a)
and, more specifically, in Fig. 11(b) for the transitions be-
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Fig. 10. Experimental results for the average times (To) and (T+)
and relative fluctuations 6To and 6T+ of those times as function of
the A parameter for laser pulses corresponding to a quasi-hetero-
clinic connections: 10R(42) CO2 laser line, 10-mTorr l5NH 3 absorb-
er with 120-mTorr CF 3Br buffer gas. Notice that in this figure, as
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Fig. 12. Experimental results for the hesitations between p(1) and
p(2) homoclinic instabilities on the 10P(30) line with 35-mTorr SF 6absorber at A = 1.02. (a) Return-time map of the T+ time. (b), (c),
and (d) Distributions of the measured T+, To, and T times, respec-
tively.

tween the p(2)_p(3)_p(4) instabilities. Discontinuities in the
T+ time have not been noted for the heteroclinic trajectories
corresponding to Fig. 10.

The measurements of the return times also point out the
presence of hesitations for the LSA transitions between dif-
ferent regimes. In fact, the FWHM of the distribution in
the return times has also been measured, and Figs. 10 and 11
show the FWHM as a percentage fluctuation of the averaged
(To) and (T+) times. It may be noticed that large fluctua-
tions of the To and T+ times appear at the infinite period
bifurcations. Moreover, large fluctuations in the T+ times
are observed in the transition between homoclinic instabil-
ities. Figure 11(b) shows relative fluctuations in the T+
time as great as 20% in the transition between the p(

2
) and

P(3 ) regimes. The presence of discontinuity and large fluc-
tuations in the T+ times is described through hesitations of
the LSA system between the different regimes. Thus, in a
narrow region of LSA parameters, LSA hesitates in opera-
tion between trajectories with a different number of revolv-
ing orbits around +. The LSA hesitations may be linked
either to stochastic mixtures of two adjoining periodic states
produced by the influence of pump parameter noise on the
LSA operation or to the existence of a narrow chaotic region
located between different instability regimes. The above
experimental observation does not allow us to distinguish
between these different possibilities.

The iteration map of the return time is an appropriate
indicator for the characterization of chaotic regimes. We
have examined the return map of the T+ times spent around
the + saddle focus point. Figure 12a shows an experimental
return map of T+ time in the hestitation between p(l) and
p(2) regimes for LSA operation on the 10R(30) line with 35-
mTorr SF6 pressure. The T+ time measured on the j pulse
has been plotted versus the time T+ measured on the j - 1
pulse. The observed structure appears to be regular, with a
broadening produced by the noise, as corresponding to a

stochastic mixture between two different regimes. Thus the
measured T+ return map seems to exclude the presence of a
chaotic regime.

Figures 12b-12d shows the distribution of the T+ and To
return time and of the period T, in the same conditions of
hesitations between p(1) and P(2) as in Fig. 12a. Owing to the
large fluctuation in the p(l)_p(2) hesitation, the distributions
of the T+ and Tp times are double peaked, corresponding to a
different number of revolutions around the I+ point. On the
contrary, the distribution of To times remains single peaked,
proving that the evolution near the Io point is independent
of the evolution in the phase space around the + point. The
1o point produces a stabilizing action on the phase-space
trajectory of the LSA.

4. THEORY

A. State Diagram
Within the model introduced in Ref. 17 and in the hypothe-
sis of homogeneously broadened transitions, the CO2 LSA
response may be described on the basis of the following
system of five equations:

dlldr = I(BgD - BaD - 1),

dD/d- = - 2IBgD - (R20 + R + 2R2,)D/4k

- (R20- R + 2R21 + 2P)S/4k + P2k,
dS/dr = -(R2 0 - Rlo)D/4k - (R20 + R + 2P)S/4k + P2k,

dD/dr = -YRD + YRA -2BaID,

dl\/dT = yRA\ + yRD - Ta( - 1), (1)

where = 2kt is the time measured in units of the inverse of
the cavity loss 2k. D = M2 - M is the difference between
the amplifier vibrational-level populations, and S is their
sum, with the total population of the three amplifier vibra-
tional levels normalized to 1. P is the pumping rate from the
ground state to the upper 2 level. D and are the absorber
population differences between rotational and vibrational
levels, respectively, normalized to the thermal equilibrium
values, and I is the laser intensity. Bg, Bsg B and Ba are
coupling parameters between laser and amplifier and ab-
sorber media and Ro, R20, R21, y, Y'R, and YR are the relax-
ation rates defined in Refs. 6 and 12.

We have numerically solved the system of Eqs. (1) for the
parameters corresponding to the LSA operation with SF6and 5NH3 as saturable absorbers. However, the results
presented here do not correspond precisely to any of those
absorbers, and instead the slightly different LSA parame-
ters introduced in the numerical analysis are such as to
produce a general state diagram, including all the observed
phenomena. Thus even if theoretical results do not repro-
duce a particular configuration examined in the experi-
ments, the experimental observation with different amplifi-
er and absorber conditions may be found within the present-
ed state diagram. The parameters used in our numerical
analysis of Eqs. (1) are presented in Table 1. The parame-
ters corresponding to the SF6 and ' 5NH3 absorbers for LSA
operating conditions near those of the reported unstable or
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Table 1. Set of LSA Parameters

Parameter Value

2k 1 X 10-7 sec1

B,,glBg 103

Ba/Bg 0.1-103
Bsa 80 Ba
Rio/2k 0.2

R 2o/2k 4 x 10-4

R21/2k 5 X 10-6

-YR/2k 8 X 10-2

'Y'R/2k 4 X 10-5

-y/2k 10-3
P/2k 1-3 X 10-5

chaotic regimes are close to those in Table 1. However, in

the numerical analysis, smaller relaxation rates were used

for the amplifier and absorber, corresponding to lower pres-

sures, and a lower cavity loss was introduced corresponding

to smaller output losses.
The LSA numerical analysis has been explored as a func-

tion of two control parameters: the pump parameter P,

affecting the A parameter, and Ba, the absorption strength.
Whereas in the experiment the P control parameter is modi-

fied through the discharge current, the Ba control parameter

does not correspond directly to an experimentally accessible
control parameter. A different Ba may be obtained by using

different absorbers. The laser frequency used as a control

parameter in the state diagram of Figs. 8 and 9 provides a

limited tuning of the Ba absorption. However, the laser

detuning also affects the pump parameter, so that a precise

comparison between the experimental (AO, A) and theoreti-
cal (P, Ba) state diagrams cannot be performed. The ab-

sorber pressure p is linearly proportional to Bsa, but it also

affects the absorber relaxation rates except in the experi-

ments at large buffer-gas pressure for which the absorber

relaxation rates depend on the buffer pressure.
The numerically determined state diagram is given in Fig.

13, and Fig. 13(b) shows an enlargement of the framed area

of 13(a). The diagram contains areas of off and cw opera-

tion and of bistability between off and cw operations (in the

upper right-hand corner). The central part of the diagram

contains an area of type-I and type-II instability regimes

separated by chaotic regions or regions of period-doubling

bifurcations on the type-I instabilities. The instability re-

gions extend to the pointed area in the upper part of Fig.

13(b), but there the spacing between the different regions is

too small to be resolved on the scale of the figure. For Ba

intermediate values, which are scanning the P pump param-

eter, the chaotic regions are approached through direct or

inverse cascades of period-doubling bifurcations. In the

lower part of the diagram a small area of cw operation ap-

pears within the instability region. The heavy line passing

near the top of Fig. 13(b) and delimiting from below the cw

region in Fig. 13(a) is the line of the Hopf bifurcation. This

line crosses the instability region and delimits, in the upper

diagram, an area of bistability between cw and instability
operations. As explained above, the regions of type-I insta-

bilities are denoted by the index n of the homoclinic orbit or

heteroclinic connection, and the regions of type-II instabil-
ities are denoted as nT.

P*10 5

2

1

0

0 1 2 3 Log, 0Ba

(a)

P*105

2.0

1.5

20 30 Ba
(b)

Fig. 13. Theoretical phase diagram of the LSA operation in the

plane of the pump parameter P and the absorption coefficient Ba,

both expressed in relative units, as presented in the text. (a) A

general view of the phase diagram. (b) An expansion of the area

shown in the box in (a). The bistable operation in the upper right-
hand corner of (a) is between the cw and off regimes. The central

area in (a) corresponds to the unstable regime, with the central line

delimiting at the left where at low pump values P() instability
occurs and a large pump value T instability occurs and at the right
where p(n) and nT instabilities take place. Notice that between the
Hopf bifurcation (heavy line) and the cw region an area exists in

which bistability occurs between the cw and unstable regimes (ei-

ther type I or type II).
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Fig. 14. Two real eigenvalues (Xi and X2 ) and the real part p of the
complex-conjugate eigenvalues at the I+ point for Ba = 35 as a
function of the pump parameter P.

B. Eigenvalues
The LSA general behavior may be analyzed on the basis of
the eigenvalues for the system of Eqs. (1) at the unstable Io
and I+ points. The Io point has four attractive eigenvalues,
determined by the relaxation rates of the amplifier and ab-
sorber. The fifth eigenvalue, X0, is attractive at low pump-
ing and is repulsive at large pumping, i.e., attractive whenev-
er the I = Io solution is a stable one and repulsive when I = Io
becomes an unstable saddle point. The + point is a saddle
focus in the instability region, with three real attractive
eigenvalues and two complex ones {S. (i = 1, 3), p ico. The
evolution of four relevant I+ eigenvalues (expressed in units
of 1/2k) as a function of the pump parameter at a chosen Ba
parameter and LSA parameters of Table 1 is shown in Fig.
14. The fifth attractive eigenvalue is large and does not
depend significantly on P. For the conditions of Fig. 14, co
lies in the 10-1 range. In Fig. 14 the point PS corresponds to
a steady bifurcation point (bifurcation Io - I+), P, to the
Hopf bifurcation point (p = 0). The P point is also a
bifurcation point for an infinite-period solution or homo-
clinic orbit at the Io point.17 From Fig. 13(b) it appears that
the instability region terminates at a P value larger than PH,
which cannot be resolved on the scale of Fig. 14. According
to a theorem of Shil'nikov,2 8 there exist infinitely many
unstable periodic trajectories in systems that display a ho-
moclinic orbit biasymptotic to a saddle focus, provided that
1p/XI < 1. The proximity of the Hopf bifurcation to the
homoclinic bifurcation in LSA permits the Shil'nikov condi-
tion to be satisfied. However, in the LSA systems that we
have explored theoretically and experimentally, two condi-
tions are present to oppose the occurrence of Shil'nikov
chaos, conceived as a large spread in the return times toward
the saddle focus'8"19: (i) homoclinic orbit biasymptotic to
the + saddle point does not occur in the typical conditions,
(ii) the motion in the phase space is locally distorted by the
presence of the Io stable point embedded within the flowing
area of the I+ point.

C. Phase-Space Orbits
Figure 15 shows the quite different trajectories on the phase
space of three LSA variables (D, D, I) for the P() and T
instabilities. The I intensity is measured in units of 1/Bg,
and the Io point with coordinates (Do, Do, 0) provides a
reference scale for the amplifier and absorber population

differences. In both cases the orbits take place near the 1+
point, but in the P(O) instability, during a large amount of the
period T, the evolution takes place in the I = Io = 0 plane.
Notice that the Io fixed point lies far from the phase-space
trajectory; thus it is the invariant I = Io surface that plays a
key role in determining the evolution of the trajectories in
the p(n) instabilities, as already noted in Fig. 5. The trajec-
tory evolves slowly when it is parallel to that surface before
orbiting far into the phase space. Such behavior is pro-
duced by a motion within the strongly attractive Io manifold
before reaching the Io repulsive direction. On the contrary,
in the T instability the trajectory takes place near the I+
point, and the Io point does not play any significant role.
The trajectories of Fig. 15 give evidence for the large differ-
ences between the P() and T trajectories and more generally
between the p(n) and nT trajectories. However, it is not
possible to define a sharp transition between the two re-
gimes. In fact, from the numerical point of view for the time
evolution of the I intensity, the P() and T trajectories
present only different orders of magnitude for the I variable

(a)

D0/20

P(a)

D

(b)

Do/21

T

Fig. 15. Orbit in the three-dimensional phase space (D, D, I) for
P(O) and T instabilities in (a) and (b), with P = 1 X 10-5 and P = 1.85
X 10-5, respectively. Ba = 25, and the other parameters are as in
Table 1. The IO point has coordinates (Do, D, 0). The arrows on
the P(0) trajectory denote equally spaced times corresponding to a
total 2kT = 180.
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Fig. 16. Three-dimensional phase-space orbits and time evolution
of the laser intensity I (versus reduced time T = 2kt) for chaotic

motions. The LSA parameters are listed in Table 1 atBa =25 and P
= 1.76 X 10-5 in (a) and (b) and P = 1.832 X 10-5 in (c) and (d).

Fig. 17. Theoretical phase portrait (I, ) around I+ for a high n
quasi-heteroclinic connection at B = 40 and P = 1.85 X 10-5,

showing two successive trajectories evolving differently around I+

but stabilized in passing through Io.

but nothing qualitatively different. A type of distinction
may be introduced if, for instance, we define as type-I trajec-

tories those trajectories with I values less than I+/100, but
that distinction would be somewhat artificial. Thus the
theoretical state diagram of Fig. 13 shows shaded areas for

the transition between type-I and type-II instabilities.
Figure 16 shows phase-space orbits and time evolutions of

the I intensity at the steady state in chaotic evolutions ob-
tained in two different LSA conditions. For Figs. 16(a) and
16(b) chaos was reached starting with the p(3) evolution, and
the attractor is spread on a narrow outside band and a
broader one near 1+. For Figs. 16(c) and 16(d) chaos was

reached from the 3T evolution, and the attractor contains a
large central hole. Similar bands of chaotic attractors filled
up ergodically have been investigated in the Belousov-Zha-
botinskii reaction within nearly homoclinic conditions and
analyzed by means of two- and one-dimensional Poincar6
maps.27 Such an approach will also be applied in the future

to LSA in order to investigate the strange attractor more
precisely.

Figure 17 shows part of a theoretical phase portrait in the
(I,) space for a trajectory corresponding to a large-n-value,
quasi-chaotic heteroclinic connection. Two successive or-

bits are presented. It appears that the two trajectories are
returned to a small neighborhood of the I+ saddle focus, and
from there two quite different outward-spiraling evolutions
take place. By expanding in the phase space, those orbits
experience the Io attractive manifold and finally converge
toward that point. Emerging from Io, the two trajectories
coalesce, and, in fact, a single trajectory appears returning to
the I+ saddle focus. Thus Fig. 17 gives clear evidence of the

stability action exerted by the Io point on the complete
trajectory. Even if small fluctuations in the I+ reinjection
lead to large variations in the orbit around that point, the
passage near Io leads to a quite stable orbit in the large
phase-space evolution.

5. CONCLUSION

The LSA unstable and chaotic regimes have been investigat-
ed as a function of the control parameters. In the experi-
mental observations the phase portraits have been used to
obtain a representation of the orbits in the phase space.
The instabilities have been classified as type I (quasi-homo-
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clinic orbits or quasi-heteroclinic connections) or type II,
depending on the phase-space orbits. State diagrams show-
ing the different operation regimes versus the control pa-
rameters have been derived. In the transitions between the
different instability regimes, hesitations have been observed
as characterized by large fluctuations produced by the noise
influence on orbits that are sensitive to the initial condi-
tions. In the transition regions the noise may mask the
presence of microscopic chaos in a narrow region of control
parameters.

In the experimental observations a richer behavior in the
appearance of unstable and chaotic regimes was noticed
whenever a high-pressure buffer gas was added to the ab-
sorber. The addition of the buffer gas allows us to operate
the LSA in a regime of homogeneously broadened absorp-
tion line, but it is unlikely that the passage from an inhomo-
geneously to a homogeneously broadened regime enhances
the occurrence of chaos. The addition of buffer gas modifies
the rotational relaxation rates, proving the delicate balance
of the LSA parameters required for the occurrence of chaos.

A numerical solution of the LSA equations has been used
to investigate the unstable and chaotic regimes. Particular
attention has been paid to the eigenvalue analysis. The
parameters of the numerical simulation have been chosen in
order to provide a varied behavior in the LSA state diagram.
The LSA model includes the rotational coupling in the am-
plifier and absorber media. The inclusion of these rotation-
al couplings does not modify the main features of the LSA
chaotic behavior, which are produced by the internal dy-
namics in the pumping process of the CO2 laser. However,
the inclusion of the rotational coupling provides a proper fit
of the static response and gives rise to a richer behavior in
the LSA response.

Of particular concern in LSA behavior is the approach to
chaos. We have observed chaotic regimes reached through a
Feigenbaum scenario, i.e., sequences of period-doubling bi-
furcations in type-I and type-II instabilities. A possibility
raised by the investigation of Dangoisse et al.13 is the occur-
rence of Shil'nikov chaos in the LSA system. For the config-
urations investigated experimentally, as well as for the nu-
merical solution, it appears that the LSA zero-intensity sad-
dle point has a strong attractive force determining the
evolution of the orbit in the phase space and eliminating the
sensitivity to the initial conditions in the saddle focus.
Therefore the Shil'nikov chaos cannot be realized. The
main feature of the LSA theoretical analysis is probably the
role played in the LSA global regime by the saddle point
embedded in the flowing space around I+. It would be
important to explore whether there is any set of LSA param-
eters, still accessible to the experimental investigations, such
that the Io point is not strongly attractive and where a Shil'-
nikov chaos would appear in the LSA operation.

In the bifurcation theory, in which small changes in cer-
tain parameters can lead to qualitative changes in the behav-
ior of the solutions for the equations of the operating system,
most of the attention is concentrated on the local nature. In
addition to the local results, questions concerning the global
behavior of the solutions, as well as the trajectories between
critical points or how bifurcated solutions behave in gener-
al, are also relevant to describe the behavior of an operating
system. In fact, we have shown that the LSA unstable

regimes with large amplitude in the output power pulses are
directly connected to trajectories between unstable points.
For the present LSA problem it is relevant that the change of
a control parameter, for instance, the pumping parameter A,
splits apart the two unstable points Io and I+, and new global
phenomena appear out of the splitting. More precisely,
trajectories joining these two points appear, and branches of
periodic solutions terminating with finite-amplitude infi-
nite-period solutions appear simultaneously. Most theoret-
ical techniques for investigating the global behavior are to-
pological, but analytical techniques for investigating, for
instance, the trajectories between the critical points have
also been developed. In close analogy with the recent study
of chaotic relaxation oscillations in optically pumped molec-
ular lasers,29 it appears that much of the rich global dynami-
cal behavior of the LSA remains to be discovered within a
careful unfolding of higher-codimension bifurcations. Dan-
gelmayr et al.16 have analyzed codimension-three and -four
bifurcations within the simplest model of two-level LSA.
They presented some general phase portraits and bifurca-
tion diagrams that included the results of the previous nu-
merical analyses and are closely related to our instability
observations. However, such an approach should be used
on the LSA model, including the internal structure of the
amplifier and absorber media.

ACKNOWLEDGMENTS

We wish to thank F. Tito Arecchi, Leone Fronzoni, and
Pierre Glorieux for stimulating discussions. This research
was performed within the Dynamics of Nonlinear Optical
Systems Twinning Program of the European Economical
Community. The research of Daniel Hennequin was sup-
ported by the European Economic Community through a
visiting fellowship.

REFERENCES

1. For a review, see F. T. Arecchi and R. G. Harrison, eds., Instabil-
ities and Chaos in Quantum Optics (Springer-Verlag, Berlin,
1987).

2. 0. R. Wood and S. E. Schwarz, "Passive Q-switching of a CO2laser," Appl. Phys. Lett. 11, 88-89 (1967).
3. I. Burak, P. L. Houston, D. G. Hutton, and J. I. Steinfeld

"Mechanism of passive Q switching in CO2 lasers," IEEE J.
Quantum Electron. QE-17, 73-82 (1971).

4. J. Dupr6, F. Meyer, and C. Meyer, "Influence des phenombnes
de relaxation sur la forme des impulsions fournies par un laser
CO2 dclench6 par un absorbant saturable," Rev. Phys. Appl.
10, 285-293 (1975); J. Dupr6, These de Doctorat d'Etat (Uni-
versite de Paris VI, Paris, 1975) (unpublished).

5. L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski,
"Semiclassical and quantum theories of bistabilities in lasers
containing saturable absorbers," Phys. Rev. A 18, 238-254
(1978).

6. E. Arimondo, F. Casagrande, L. Lugiato, and P. Glorieux, "Re-
petitive passive Q-switching and bistability in lasers with satu-
rable absorber," Appl, Phys. B 30, 57-77 (1983).

7. E. Arimondo, P. Bootz, P. Glorieux, and E. Menchi, "Pulse
shape and phase diagram in the passive Q switching of CO2lasers," J. Opt. Soc. Am. B 2, 193-201 (1985).

8. J. C. Antoranz, L. Gea, and M. G. Velarde, "Oscillatory phenom-
ena and Q switching in a model for a laser with a saturable
absorber," Phys. Rev. Lett. 47,1895-1898 (1981); M. G. Velarde
and J. C. Antoranz, "Strange attractor (optical turbulence) in a
model problem for the laser with saturable absorber and the



Vol. 6, No. 1/January 1989/J. Opt. Soc. Am. B 57

two-component Benard convection," Progr. Theor. Phys. 66,
717-720 (1981); M. Velarde, "Benard convection and the laser

with saturable absorber oscillations and chaos," in Evolution of

Order and Chaos in Physics, Chemistry and Biology, H. Haken,
ed. (Springer-Verlag, Berlin, 1982), pp. 132-145.

9. P. Mandel and T. Erneux, "Stationary, harmonic, and pulsed
operations of an optically bistable laser with saturable absor-

ber," Phys. Rev. A 30, 1893-1901 (I), 1902-1909 (II) (1984); T.

Erneux, P. Mandel, and J. F. Magnan, "Quasiperiodicity in

lasers with saturable absorbers," Phys. Rev. A 29, 2690-2699
(1986).

10. E. Arimondo, D. Dangoisse, and L. Fronzoni, "Transient bimo-

dality in a bistable laser with saturable absorber," Europhys.
Lett. 4, 287-292 (1987).

11. E. Arimondo, D. Dangoisse, L. Fronzoni, 0. Incani, and N. K.

Rahman, "Optical bistability switching with external noise,"
AIP Conf. Proc. 160, 190-195 (1987).

12. M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, "Un-

damped undulation superposed on the passive Q-switching
pulse of a CO2 laser," Appl. Phys. B 39, 83-90 (1986); "Compre-
hensive interpretation of passive Q switching and optical bista-

bility in a CO2 laser with an intracavity saturable absorber," J.

Opt. Soc. Am. B 4, 387-395 (1987).
13. D. Dangoisse, A. Bekkali, F. Papoff, and P. Glorieux, "Inverse

Shil'nikov dynamics in a passive Q-switching laser," in Digest of

Instabilities, Dynamics, and Chaos in Nonlinear Optical Sys-
tems, N. B. Abraham, E. Arimondo, and R. W. Boyd, eds. (ETS,
Pisa, 1987); Europhys. Lett. 6, 335-340 (1988).

14. D. Hennequin, F. de Tomasi, B. Zambon, and E. Arimondo,

"Homoclinic orbits and cycles in the instabilities of a laser with

saturable absorber," Phys. Rev. A 37, 2243 (1988). Notice that

in Fig. 4 a misprint occurred. The total time scale was 0.2 msec
instead of 2 msec.

15. M. Tachikawa, F. Hong, K. Tanii, and T. Shimizu, "Determina-

tion of chaos in passive Q-switching pulsation of a CO2 laser

with saturable absorber," Phys. Rev. Lett. 60,2266-2268 (1988).

16. G. Dangelmayr, D. Ambruster, and M. Neveling, "A codimen-
sion three bifurcation for the laser with saturable absorber," Z.

Phys. 59B, 365-370 (1985); G. Dangelmayr, M. Neveling, and D.

Ambruster, "Structurally stable phase portraits for the five-
dimensional Lorenz equations," Z. Phys. 64B, 491-501 (1986).

17. T. Erneux, "The Q-switching bifurcation in the laser with satu-
rable absorber," J. Opt. Soc. Am. B 5, 1063-1069 (1988).

18. F. T. Arecchi, R. Meucci, and K. Gadomski, "Laser dynamics
with competing instabilities," Phys. Rev. Lett. 58, 2205-2208
(1987).

19. F. T. Arecchi, R. Meucci, J. A. Roversi, and P. H. Coullet,
"Experimental characterization of Shil'nikov chaos by statistics
of return time," Europhys. Lett. 6, 677-682 (1988).

20. B. Zambon, F. de Tomasi, D. Hennequin, and E. Arimondo, "A

new model for the passive Q-switching in CO2 lasers," in Digest
of Instabilities, Dynamics, and Chaos in Nonlinear Optical
Systems, N. B. Abraham, E. Arimondo, and R. W. Boyd, eds.
(ETS, Pisa, 1987).

21. M. Tachikawa, M. Tanii, and T. Shimizu, "Laser instability and
chaotic pulsation in CO2 laser with intracavity saturable absor-
ber," J. Opt. Soc. Am. B 5, 1077-1082 (1988).

22. D. Dangoisse and P. Glorieux, "Feigenbaum and Shil'nikov
chaos in a laser containing a saturable absorber: experiments
and comparison with a simple theoretical model," to be submit-
ted to J. Opt. Soc. Am. B.

23. K. Tanii, M. Tachikawa, M. Kajita, and T. Shimizu, "Sinusoidal
self-modulation in the output of CO2 laser with intracavity
saturable absorber," J. Opt. Soc. Am. B 5, 24-28 (1988).

24. E. Arimondo, D. Dangoisse, C. Gabbanini, E. Menchi, and F.
Papoff, "Dynamic behavior of bistability in a laser with a satu-
rable absorber," J. Opt. Soc. Am. B 4, 892-899 (1987).

25. C. Salomon, These de Docteur de troisieme cycle (Universit6 de

Paris-Nord, Paris, 1979) (unpublished); C. Breant, These de
Docteur es Sciences (Universit6 de Paris-Nord, Paris, 1985)
(unpublished).

26. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems and Bifurcation of Vector Fields (Springer-
Verlag, Berlin, 1984).

27. F. Argoul, A. Arneodo, P. Richetti, and J. C. Roux, "Experimen-
tal evidence for homoclinic chaos in the Belousov-Zhabotinski
reaction," J. Chem. Phys. 86, 3325 (1987).

28. L. P. Shil'nikov, "A case of the existence of a denumerable set of
periodic motions," Sov. Math. Dokl. 6, 163-166 (1965).

29. J. V. Moloney, J. S. Uppal, and R. G. Harrison, "Origin of
chaotic relaxation oscillations in an optically pumped molecular
laser," Phys. Rev. Lett. 59, 2868-2871 (1987).

De Tomasi et al.


